Heavy Crude Oil Recovery Enhancement and In-Situ Upgrading During Steam Injection Using Ni-Co-Mo Dispersed Catalyst

Author(s):  
S. M. Shuwa ◽  
R. S. Al-Hajri ◽  
A. Mohsenzadeh ◽  
Y. M. Al-Waheibi ◽  
B. Y. Jibril
2021 ◽  
Vol 931 (1) ◽  
pp. 012002
Author(s):  
A Pituganova ◽  
I Minkhanov ◽  
A Bolotov ◽  
M Varfolomeev

Abstract Thermal enhanced oil recovery techniques, especially steam injection, are the most successful techniques for extra heavy crude oil reservoirs. Steam injection and its variations are based on the decrease in oil viscosity with increasing temperature. The main objective of this study is the development of advanced methods for the production of extra heavy crude oil in the oilfield of the Republic of Tatarstan. The filtration experiment was carried out on a bulk model of non-extracted core under reservoir conditions. The experiment involves the injection of slugs of fresh water, hot water and steam. At the stage of water injection, no oil production was observed while during steam injection recovery factor (RF) achieved 13.4 % indicating that fraction of immobile oil and non-vaporizing residual components is high and needed to be recovered by steam assisted EORs.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1009
Author(s):  
Luisana Cardona ◽  
Oscar E. Medina ◽  
Santiago Céspedes ◽  
Sergio H. Lopera ◽  
Farid B. Cortés ◽  
...  

This work focuses on evaluating the effect of the steam quality on the upgrading and recovering extra-heavy crude oil in the presence and absence of two nanofluids. The nanofluids AlNi1 and AlNi1Pd1 consist of 500 mg·L−1 of alumina doped with 1.0% in mass fraction of Ni (AlNi1) and alumina doped with 1.0% in mass fraction of Ni and Pd (AlNi1Pd1), respectively, and 1000 mg·L−1 of tween 80 surfactant. Displacement tests are done in different stages, including (i) basic characterization, (ii) waterflooding, (iii) steam injection at 0.5 quality, (iv) steam injection at 1.0 quality, (v) batch injection of nanofluids, and (vi) steam injection after nanofluid injection at 0.5 and 1.0 qualities. The steam injection is realized at 210 °C, the reservoir temperature is fixed at 80 °C, and pore and overburden pressure at 1.03 MPa (150 psi) and 5.51 MPa (800 psi), respectively. After the steam injection at 0.5 and 1.0 quality, oil recovery is increased 3.0% and 7.0%, respectively, regarding the waterflooding stage, and no significant upgrade in crude oil is observed. Then, during the steam injection with nanoparticles, the AlNi1 and AlNi1Pd1 increase the oil recovery by 20.0% and 13.0% at 0.5 steam quality. Meanwhile, when steam is injected at 1.0 quality for both nanoparticles evaluated, no incremental oil is produced. The crude oil is highly upgraded for the AlNi1Pd1 system, reducing oil viscosity 99%, increasing the American Petroleum Institute (API)° from 6.9° to 13.3°, and reducing asphaltene content 50% at 0.5 quality. It is expected that this work will eventually help understand the appropriate conditions in which nanoparticles should be injected in a steam injection process to improve its efficiency in terms of oil recovery and crude oil quality.


Author(s):  
Carlos A. Avendaño-Salazar ◽  
Edgar Ramírez-Jaramillo ◽  
José L. Mendoza de la Cruz ◽  
A. Albiter

Numerous studies have contributed to a better understanding of the in-situ combustion process that have allowed to determine the most suitable conditions to carry out this process in reservoirs from volatile to extra-heavy crude oils. One of the elements that alter the behavior of this process is the compositional gradient. In this work, the effects of areal compositional variations in the in-situ combustion of three Mexican extra-heavy crude oil samples obtained from the same reservoir and extracted under similar production conditions were studied. Physicochemical, thermal, and kinetics analyses (by means of one non-linear method) were carried out to study the areal compositional variations of the extra-heavy crude oil samples, and their effect on the in-situ combustion of this type of crude oil was also analyzed. Physicochemical characterization includes measurements of viscosity, density, water content, and SARA content. Thermal analyses were performed using three heating rates (5 °C/min, 10 °C/min, and 15 °C/min), while kinetic analyses were calculated using Friedman’s method.


2001 ◽  
Author(s):  
Cesar Ovalles ◽  
Carlos Vallejos ◽  
Tito Vasquez ◽  
Jorge Martinis ◽  
Alfredo Perez-Perez ◽  
...  

Author(s):  
Seyed Amir Farzaneh ◽  
Riyaz Kharrat ◽  
Mohammad Hossein Ghazanfari

Micromodel is small-scale artificial model of porous medium which is known as a novel approach for simulating flow and transport in porous media. For better understanding the effect of fracture geometrical properties on oil recovery efficiency, a series of first contact miscible solvent injection process were conducted on horizontal glass micromodels at several fixed flow rate conditions. The micromodels were initially saturated with the heavy crude oil. The produced oil as a function of injected volume of solvents was measured using image analysis of the provided pictures. The concentration calibration curves of solvents in heavy crude oil were used for evaluating the solvents concentration. Several fractured and non-fractured quarter five-spot micromodels were generated by chemically etching process. The result of the experiments show that the produced oil decreased when the flow rate, fracture spacing, fracture discontinuity, fracture overlap, and fracture distribution were increased. In contrast, the produced oil increased, when the solvent viscosity, fracture orientation angles, fracture discontinuity-distribution and the number of fracture were increased. In addition, an optimum solvent composition is proposed.


Sign in / Sign up

Export Citation Format

Share Document