Shale Gas Novel Technology: Is Coiled Tubing Undulating Completion Compatible in Substituting Multistage Hydraulic Fracturing in Shale Gas Production? (Russian)

2018 ◽  
Author(s):  
William Gunawan ◽  
Fatimah Larassaty Putri Pratami ◽  
William Angtony ◽  
Steven Chandra ◽  
Ardhi Hakim Lumban Gaol
2016 ◽  
Author(s):  
Ali Al-Ghaithi ◽  
Fahad Alawi ◽  
Ernest Sayapov ◽  
Ehab Ibrahim ◽  
Najet Aouchar ◽  
...  

2021 ◽  
Vol 73 (08) ◽  
pp. 67-68
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 201694, “Interwell Fracturing Interference Evaluation of Multiwell Pads in Shale Gas Reservoirs: A Case Study in WY Basin,” by Youwei He, SPE, Jianchun Guo, SPE, and Yong Tang, Southwest Petroleum University, et al., prepared for the 2020 SPE Annual Technical Conference and Exhibition, originally scheduled to be held in Denver, Colorado, 5–7 October. The paper has not been peer reviewed. The paper aims to determine the mechanisms of fracturing interference for multiwell pads in shale gas reservoirs and evaluate the effect of interwell fracturing interference on production. Field data of 56 shale gas wells in the WY Basin are applied to calculate the ratio of affected wells to newly fractured wells and understand its influence on gas production. The main controlling factors of fracturing interference are determined, and the interwell fracturing interacting types are presented. Production recovery potential for affected wells is analyzed, and suggestions for mitigating fracturing interference are proposed. Interwell Fracturing Interference Evaluation The WY shale play is in the southwest region of the Sichuan Basin, where shale gas reserves in the Wufeng-Longmaxi formation are estimated to be the highest in China. The reservoir has produced hydrocarbons since 2016. Infill well drilling and massive hydraulic fracturing operations have been applied in the basin. Each well pad usually is composed of six to eight multifractured horizontal wells (MFHWs). Well spacing within one pad, or the distance between adjacent well pads, is so small that fracture interference can occur easily between infill wells and parent wells. Fig. 1 shows the number of wells affected by in-fill well fracturing from 2016 to 2019 in the basin. As the number of newly drilled wells increased between 2017 and 2019, the number of wells affected by hydraulic fracturing has greatly increased. The number of wells experiencing fracturing interaction has reached 65 in the last 4 years at the time of writing.


2021 ◽  
Author(s):  
Mikhail Yurievich Golenkin ◽  
Denis Vladimirovich Eliseev ◽  
Alexander Anatolyevich Zemchikhin ◽  
Alexey Alexandrovich Borisenko ◽  
Akhmat Sakhadinovich Atabiyev ◽  
...  

Abstract The paper describes the results of the first multistage hydraulic fracturing operations in Russia on the Caspian Sea shelf in the gas condensate and oil deposits of the Aptian formation of V. Filanovsky field. In addition to the small productive formation depth, long horizontal sections with a complex trajectory and high collapse gradients due to large zenith angles when passing the Albian and Aptian deposits of poorly consolidated sandstones are an additional challenge for choosing a multistage hydraulic fracturing assembly. The above features require the use of modern sand control screens with enhanced frac sleeves. A design was developed which includes frac sleeves and sand control screens that can withstand multiple cycles of hydraulic impact during hydraulic fracturing, as well as many opening/closing cycles. A seawater-based frac fluid system was applied. The frac fleet was located on a pontoon, the coiled tubing – on a platform. For the first time in Russia, a 2-5/8 inch coiled tubing with a complex-type friction reducing system was used to switch coupling/sleeves in conditions of very long horizontal sections, complex trajectories, and high friction coefficients. The minimum distances between the screen's sliding sleeves and frac sleeves did not prevent from performing manipulations in complex environment. For well cleaning, the frac assemblies of reverse rotary-pulse and rotary-directional types were used. At the first stage of the project, the development of an optimal method of well completion was successfully implemented. Due to the close interaction of the operating company, service company, and science & engineering team of the operator, for the first time in Russia the design of downhole equipment with the use of advanced technologies of sand control screens, frac sleeves was presented. This solution has proved its effectiveness – the downhole equipment has retained its operational properties after a long period of well operation and further in the process of hydraulic fracturing. At the second stage of the project, 32 MSHF operations were performed at four wells. To reduce nonproductive time and operational risks, a satellite communication complex was additionally deployed on the pontoon to join the engineering centers of Astrakhan, Moscow, and Houston. After finishing the well development, the design indicators for formation fluid rates were achieved, which proved the effectiveness of the stimulation of the field's target objects – this opens great prospects for further development of low-permeability reservoirs at offshore sites in the Caspian Sea. The successful project implementation and the achievement of the design values of oil flow rates has expanded the possibilities of commercial operation of the low-permeable Aptian formation, complicated by the presence of a gas cap and underlying water. A solution was presented for working in extended horizontal well sections with 2-5/8 inch coiled tubing together with a complex-type mechanical friction reducing system. The economic effect was achieved when solving tasks of manipulating mechanical screen couplings and frac port sleeves without the involvement of downhole tractors. The use of new solutions in the completion assembly made it possible to eliminate additional sand ingress problems.


2019 ◽  
Vol 58 (27) ◽  
pp. 12097-12115 ◽  
Author(s):  
Kaiyu Cao ◽  
Prashanth Siddhamshetty ◽  
Yuchan Ahn ◽  
Rajib Mukherjee ◽  
Joseph Sang-Il Kwon

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhiheng Zhao ◽  
Youcheng Zheng ◽  
Yili Kang ◽  
Bo Zeng ◽  
Yi Song

Hydraulic fracturing with multiple clusters has been a significant way to improve fracture complexity and achieve high utilization of shale formation. This technology has been widely applied in the main shale area of North America. In Changning shale block of China, it, as a promising treatment technology, is being used in horizontal well now. Due to the anisotropy of mechanical property and the stress shadowing effect between multiclusters, fractures would extend nonuniformly and even some clusters are invalid, leading to a poor treatment performance. In this work, based on the geology and engineering characteristics of Changning shale block, different cluster number, cluster spacing, perforation distribution, and flow rate were discussed by the numerical simulation method to clarify multifracture propagation. It is implied that with the reduction of cluster number and the growth of cluster spacing and flow rate, the length and average width of interior fractures are inclined to increase due to the mitigation of stress shadowing effect, contributing to the lower standard deviation (SD) of fracture length, but too small cluster number or too large cluster spacing is not recommended. Besides, the perforation distribution with more perforations in interior fractures can get larger length and average width of interior fractures compared with another two perforation distributions because of more fractional flow rates obtained, which results in more even fracture propagations. In Changning shale block, multicluster hydraulic fracturing with 4-6 clusters in a stage has been employed in 300-400 m well spacing, and diversion technology, limited-entry perforation (36-48 perforations per stage), high flow rate (16 m3/min), and small-sized ceramic proppant (100 mesh) are used to get better shale gas production. To promote the even propagation of fractures further, nonuniform perforation distribution should be introduced in the target shale area.


Author(s):  
Mikhail I. Khoroshiltsev

The article analyzes shale gas production in the United States and calculates its economic efficiency. The development of shale gas production became possible due to the combination of tight reservoirs in a single technological process of drilling and hydraulic fracturing. A technological breakthrough in gas production made it economically attractive for investors (considering the prices of that period) to develop unconventional hydrocarbon deposits. At the same time, like any new industrial sector, the development of shale gas is associated with significant costs at various levels.


Sign in / Sign up

Export Citation Format

Share Document