Microscale Interactions of Surfactant and Polymer Chemicals at Crude Oil-Water Interface for Enhanced Oil Recovery

2019 ◽  
Author(s):  
Subhash Ayirala ◽  
Zuoli Li ◽  
Rubia Mariath Mariath ◽  
Abdulkareem AlSofi ◽  
Zhenghe Xu ◽  
...  
SPE Journal ◽  
2013 ◽  
Vol 18 (02) ◽  
pp. 319-330 ◽  
Author(s):  
Dai Makimura ◽  
Makoto Kunieda ◽  
Yunfeng Liang ◽  
Toshifumi Matsuoka ◽  
Satoru Takahashi ◽  
...  

Summary Molecular simulation is a powerful technique for obtaining thermodynamic properties of a system of given composition at a specific temperature and pressure, and it enables us to visualize microscopic phenomena. In this work, we used simulations to study interfacial phenomena and phase equilibria, which are important to CO2-enhanced oil recovery (EOR). We conducted molecular dynamics (MD) simulation of an oil/water interface in the presence of CO2. It was found that CO2 was enriched at the interfacial region under all thermal conditions. Whereas the oil/water interfacial tension (IFT) increases with pressure, CO2 reduces the IFT by approximately one-third at low pressure and one-half at higher pressure. Further analysis on the basis of our MD trajectories shows that the O=C=O bonds to the water with a “T-shaped” structure, which provides the mechanism for CO2 enrichment at the oil/water interface. The residual nonnegligible IFT at high pressures implies that the connate or injected water in a reservoir strongly influences the transport of CO2/oil solutes in that reservoir. We used Gibbs ensemble Monte Carlo (GEMC) simulation to compute phase equilibria and obtain ternary phase diagrams of such systems as CO2/n-butane/N2 and CO2/n-butane/n-decane. Simulating hydrocarbon fluids with a mixture of CO2 and N2 enables us to evaluate the effects of N2 impurity on CO2-EOR. It also enables us to study the phase behavior, which is routinely used to evaluate the minimum miscibility pressure (MMP). We chose these two systems because experimental data are available for them. Our calculated phase equilibria are in fair agreement with experiments. We also discuss possible ways to improve the predictive capability for CO2/hydrocarbon systems. GEMC and MD simulations of systems with heavier hydrocarbons are straightforward and enable us to combine molecular-level thinking with process considerations in CO2-EOR.


SPE Journal ◽  
2020 ◽  
Vol 25 (04) ◽  
pp. 1812-1826
Author(s):  
Subhash Ayirala ◽  
Zuoli Li ◽  
Rubia Mariath ◽  
Abdulkareem AlSofi ◽  
Zhenghe Xu ◽  
...  

Summary The conventional experimental techniques used for performance evaluation of enhanced oil recovery (EOR) chemicals, such as polymers and surfactants, have been mostly limited to bulk viscosity, phase behavior/interfacial tension (IFT), and thermal stability measurements. Furthermore, fundamental studies exploring the different microscale interactions instigated by the EOR chemicals at the crude oil/water interface are scanty. The objective of this experimental study is to fill this existing knowledge gap and deliver an important understanding on underlying interfacial sciences and their potential implications for oil recovery in chemical EOR. Different microscale interactions of EOR chemicals, at crude oil/water interface, were studied by using a suite of experimental techniques, including an interfacial shear rheometer, Langmuir trough, and coalescence time measurement apparatus at both ambient (23°C) and elevated (70°C) temperatures. The reservoir crude oil and high-salinity injection water (57,000 ppm total dissolved solids) were used. Two chemicals, an amphoteric surfactant (at 1,000 ppm) and a sulfonated polyacrylamide polymer (at 500 and 700 ppm) were chosen because they are tolerant to high-salinity and high-temperature conditions. Interfacial viscous and elastic moduli (viscoelasticity), interface pressures, interface compression energies, and coalescence time between crude oil droplets are the major experimental data measured. Interfacial shear rheology results showed that surfactant favorably reduced the viscoelasticity of crude oil/water interface by decreasing the elastic and viscous modulus and increasing the phase angle to soften the interfacial film. Polymers in brine either alone or together with surfactant increased the viscous and elastic modulus and decreased the phase angle at the oil/water interface, thereby contributing to interfacial film rigidity. Interfacial pressures with polymers remained almost in the same order of magnitude as the high-salinity brine. In contrast, a significant reduction in interfacial pressures with surfactant was observed. The interface compression energies indicated the same trend and were reduced by approximately two orders of magnitude when surfactant was added to the brine. The surfactant was also able to retain similar interface behavior under compression even in the presence of polymers. The coalescence times between crude oil droplets were increased by polymers, while they were substantially decreased by the surfactant. These consistent findings from different experimental techniques demonstrated the adverse interactions of polymers at the crude oil/water interface to result in more rigid films, while confirming the high efficiency of the surfactant to soften the interfacial film, promote the oil droplets coalescence, and mobilize substantial amounts of residual oil in chemical EOR. This experimental study, for the first time, characterized the microscale interactions of surfactant-polymer chemicals at the crude oil/water interface. The applicability of several interfacial experimental techniques has been demonstrated to successfully understand underlying interfacial sciences and oil mobilization mechanisms in chemical EOR. These techniques and methods can provide potential means to efficiently screen and optimize EOR chemical formulations for better oil recovery in both sandstone and carbonate reservoirs.


2021 ◽  
pp. 1-19
Author(s):  
D. Magzymov ◽  
T. Clemens ◽  
B. Schumi ◽  
R. T. Johns

Summary A potential enhanced oil recovery technique is to inject alkali into a reservoir with a high-total acid number (TAN) crude to generate soap in situ and reduce interfacial tension (IFT) without the need to inject surfactant. The method may be cost-effective if the IFT can be lowered enough to cause significant mobilization of trapped oil while also avoiding formation of gels and viscous phases. This paper investigates the potential field application of injecting alkali to generate in-situ soap and favorable phase behavior for a high-TAN oil. Oil analyses show that the acids in the crude are a complex mixture of various polar acids and not mainly carboxylic acids. The results from phase behavior experiments do not undergo typical Winsor microemulsion behavior transition and subsequent ultralow IFTs below 1×10−3 mN/m that are conventionally observed. Instead, mixing of alkali and crude/brine generate water-in-oil macroemulsions that can be highly viscous. For a specific range of alkali concentrations, however, phases are not too viscous, and IFTs are reduced by several orders of magnitude. Incremental coreflood recoveries in this alkali range are excellent, even though not all trapped oil is mobilized. The viscous phase behavior at high alkali concentrations is explained by the formation of salt-crude complexes, created by acids from the crude oil under the alkali environment. These hydrophobic molecules tend to agglomerate at the oil-water interface. Together with polar components from the crude oil, they can organize into a highly viscous network and stabilize water droplets in the oleic phase. Oil-soluble alcohol was added to counter those two phenomena at large concentrations, but typical Winsor phase behavior was still not observed. A physicochemical model is proposed to explain the salt-crude complex formation at the oil-water interface that inhibits classical Winsor behavior.


Fuel ◽  
2017 ◽  
Vol 191 ◽  
pp. 239-250 ◽  
Author(s):  
Sivabalan Sakthivel ◽  
Sugirtha Velusamy ◽  
Vishnu Chandrasekharan Nair ◽  
Tushar Sharma ◽  
Jitendra S. Sangwai

2018 ◽  
Vol 39 (2) ◽  
pp. 101-106
Author(s):  
Cut Nanda Sari ◽  
Usman Usman ◽  
Rukman Hertadi ◽  
Tegar Nurwahyu Wijaya ◽  
Leni Herlina ◽  
...  

Peptides and their derivatives can be applied in enhanced oil recovery (EOR) due to their ability to form an emulsion with hydrophobic molecules. However, peptide research for EOR application, either theoretical or computational studies, is still limited. The purpose of this research is to analyse the potency of the X6D model of surfactant peptide for EOR by molecular dynamics simulations in oil-water interface. Molecular dynamics simulation using GROMACS Software with Martini force field can assess a peptides ability for self-assembly and emulsification on a microscopic scale. Molecular dynamics simulations combined with coarse grained models will give information about the dynamics of peptide molecules in oil-water interface and the calculation of interfacial tension value. Four designs of X6D model: F6D, L6D, V6D, and I6D are simulated on the oil-water interface. The value of interfacial tension from simulation show the trend of F6D L6D I6D V6D. The results indicate that V6D has the greatest reduction in interfacial tension and has the stability until 90C with the salinity of at least 1M NaCl.


RSC Advances ◽  
2015 ◽  
Vol 5 (18) ◽  
pp. 13993-14001 ◽  
Author(s):  
Jianhui Zhao ◽  
Caili Dai ◽  
Qinfang Ding ◽  
Mingyong Du ◽  
Haishun Feng ◽  
...  

The molecular structure has an important effect on the surface and interfacial properties of sulfobetaine surfactant at both air–water and crude oil–water interfaces.


MRS Advances ◽  
2018 ◽  
Vol 3 (26) ◽  
pp. 1469-1474 ◽  
Author(s):  
Chandan K Choudhury ◽  
Olga Kuksenok

ABSTRACTUsing dissipative particle dynamics approach, we model phase separation in a ternary system encompassing cross-linked polyacrylamide (PAM) gel, oil and water. PAM gels are widely used in many applications, from food and cosmetic applications to enhanced oil recovery approaches. We show that the PAM nanogel adsorbs at the oil-water interface and spreads out over this interface for the case of a loosely cross-linked polymer network. Tailoring PAM behavior at the oil-water interfaces by controlling gel’s properties could allow one to alter the properties of oil-water emulsions.


Sign in / Sign up

Export Citation Format

Share Document