Catastrophic Events and Human Error: A Few Rotten Apples or Organizational Dysfunction?

2021 ◽  
Author(s):  
Peter Vincent Bridle

Abstract In July 2021, commemorations will be held to mark the 33 years since the 1988 Piper Alpha tragedy in the UK sector of the North Sea where 167 oil field workers lost their lives. Without question, the incident was a watershed event for the international oil and gas industry not simply because of the immediate toll in human lives lost, but also in terms of the devasting aftermath endured by countless friends, families and loved ones whose lives were forever changed. The tragedy also served to illustrate just how poorly the oil and gas industry really understood and managed those operating risks that possessed the potential for catastrophic loss, both in terms of business cost and overall reputational impact. In the wake of the public enquiry that followed and chaired by Lord Cullen of Whitekirk, one of the principal recommendations required that the international oil and gas industry do a much better job in determining both its major hazards (i.e. major operating risks) and also in creating the necessary operating conditions to demonstrate that such things were being well managed. The objective being to provide tangible assurance that the likelihood of the industry ever incurring such a calamitous event again in the future had been reduced to as low as reasonably practicable (ALARP). In taking its responsibilities very seriously, the international oil and gas industry responded by raising the profile of the management of Health, Safety and the Environment (HSE) across the wide spectrum of its global operations. By the mid-nineties, the industry had implemented comprehensive and structured systems of work within the framework of purposely built HSE Management Systems using templates designed and developed for the industry via the International Oil and Gas Producers (IOGP)*.

2021 ◽  
Author(s):  
Peter Bridle

Abstract By July of 2021, it would have been 33 years since the 1988 Piper Alpha tragedy in the UK sector of the North Sea where 167 oil field workers lost their lives. Without question, the incident was a watershed event for the international oil and gas industry. And not simply because of the immediate toll in human lives lost, but also in terms of the devasting aftermath endured by countless friends, families and loved ones whose lives were forever changed on that fateful day. The tragedy also served to illustrate how much work would be needed by the oil and gas industry to fully understand and better manage those operating risks that possessed the potential for catastrophic loss in terms of business cost and reputational impact. In the wake of the public enquiry that followed and chaired by Lord Cullen of Whitekirk, one of the principal recommendations resulting from the disaster required that the international oil and gas industry do a much better job in determining both its major hazards (i.e. major operating risks) and in creating the necessary operating conditions to demonstrate that such things were being well managed. The objective being to provide tangible assurance that the likelihood of the industry ever incurring such a calamitous event again in the future had been reduced to as low as reasonably practicable (ALARP). In taking its responsibilities very seriously, the international oil and gas industry responded by raising the profile of the management of Health, Safety, and the Environment (HSE) across the wide spectrum of its global operations. By the mid-nineties, the industry had implemented comprehensive and structured systems of work within the framework of purposely built HSE Management Systems using templates designed and developed for the industry via the International Oil and Gas Producers (IOGP)*.


2017 ◽  
Vol 57 (2) ◽  
pp. 498
Author(s):  
Mike Lynn ◽  
Alan Samuel

In the last 12 months or so, particularly with the drop in oil price, there’s been a lot of speculation about the future of the Australian oil and gas industry. Strenuous efforts are being made to bring down costs, reduce complexity and expedite the completion of major capital projects. Yet with the commodity price looking likely to be subdued for some time, serious questions persist. How can we sustain activity in Australia, secure the investment needed to continue exploration and appraisal drilling, for the next wave of projects? In looking for answers to these challenges, collaboration is a theme that comes up time and time again. But what does it actually mean? What does it look like in practice? Who does it well and how? And which companies are reaping the rewards of great collaboration? To fill this knowledge gap we are launching a survey which will look at many aspects of collaboration in the Australia and compare this with the results of similar surveys conducted in the UK. We will be looking to survey both operators and service companies working in the Australia and find out: What does collaboration mean? What constitutes effective collaboration? How do companies view themselves and each other as collaborators? How does collaboration in Australia compare with companies in the North Sea? We hope a better understanding of collaboration could help companies in Australia continue to improve productivity and efficiency, adopt new ways of working, and truly make the most of Australia’s abundant resources.


2020 ◽  
pp. 42-45
Author(s):  
J.A. Kerimov ◽  

The implementation of plastic details in various constructions enables to reduce the prime cost and labor intensity of machine and device manufacturing, decrease the weight of design and improve their quality and reliability at the same time. The studies were carried out with the aim of labor productivity increase and substitution of colored and black metals with plastic masses. For this purpose, the details with certain characteristics were selected for further implementation of developed technological process in oil-gas industry. The paper investigates the impact of cylinder and compression mold temperature on the quality parameters (shrinkage and hardness) of plastic details in oil-field equipment. The accessible boundaries of quality indicators of the details operated in the equipment of exploration, drilling and exploitation of oil and gas industry are studied in a wide range of mode parameters. The mathematic dependences between quality parameters (shrinkage and hardness) of the details on casting temperature are specified.


2021 ◽  
Author(s):  
Henry Ijomanta ◽  
Lukman Lawal ◽  
Onyekachi Ike ◽  
Raymond Olugbade ◽  
Fanen Gbuku ◽  
...  

Abstract This paper presents an overview of the implementation of a Digital Oilfield (DOF) system for the real-time management of the Oredo field in OML 111. The Oredo field is predominantly a retrograde condensate field with a few relatively small oil reservoirs. The field operating philosophy involves the dual objective of maximizing condensate production and meeting the daily contractual gas quantities which requires wells to be controlled and routed such that the dual objectives are met. An Integrated Asset Model (IAM) (or an Integrated Production System Model) was built with the objective of providing a mathematical basis for meeting the field's objective. The IAM, combined with a Model Management and version control tool, a workflow orchestration and automation engine, A robust data-management module, an advanced visualization and collaboration environment and an analytics library and engine created the Oredo Digital Oil Field (DOF). The Digital Oilfield is a real-time digital representation of a field on a computer which replicates the behavior of the field. This virtual field gives the engineer all the information required to make quick, sound and rational field management decisions with models, workflows, and intelligently filtered data within a multi-disciplinary organization of diverse capabilities and engineering skill sets. The creation of the DOF involved 4 major steps; DATA GATHERING considered as the most critical in such engineering projects as it helps to set the limits of what the model can achieve and cut expectations. ENGINEERING MODEL REVIEW, UPDATE AND BENCHMARKING; Majorly involved engineering models review and update, real-time data historian deployment etc. SYSTEM PRECONFIGURATION AND DEPLOYMENT; Developed the DOF system architecture and the engineering workflow setup. POST DEPLOYMENT REVIEW AND UPDATE; Currently ongoing till date, this involves after action reviews, updates and resolution of challenges of the DOF, capability development by the operator and optimizing the system for improved performance. The DOF system in the Oredo field has made it possible to integrate, automate and streamline the execution of field management tasks and has significantly reduced the decision-making turnaround time. Operational and field management decisions can now be made within minutes rather than weeks or months. The gains and benefits cuts across the entire production value chain from improved operational safety to operational efficiency and cost savings, real-time production surveillance, optimized production, early problem detection, improved Safety, Organizational/Cross-discipline collaboration, data Centralization and Efficiency. The DOF system did not come without its peculiar challenges observed both at the planning, execution and post evaluation stages which includes selection of an appropriate Data Gathering & acquisition system, Parts interchangeability and device integration with existing field devices, high data latency due to bandwidth, signal strength etc., damage of sensors and transmitters on wellheads during operations such as slickline & WHM activities, short battery life, maintenance, and replacement frequency etc. The challenges impacted on the project schedule and cost but created great lessons learnt and improved the DOF learning curve for the company. The Oredo Digital Oil Field represents a future of the oil and gas industry in tandem with the industry 4.0 attributes of using digital technology to drive efficiency, reduce operating expenses and apply surveillance best practices which is required for the survival of the Oil and Gas industry. The advent of the 5G technology with its attendant influence on data transmission, latency and bandwidth has the potential to drive down the cost of automated data transmission and improve the performance of data gathering further increasing the efficiency of the DOF system. Improvements in digital integration technologies, computing power, cloud computing and sensing technologies will further strengthen the future of the DOF. There is need for synergy between the engineering team, IT, and instrumentation engineers to fully manage the system to avoid failures that may arise from interface management issues. Battery life status should always be monitored to ensure continuous streaming of real field data. New set of competencies which revolves around a marriage of traditional Petro-technical skills with data analytic skills is required to further maximize benefit from the DOF system. NPDC needs to groom and encourage staff to venture into these data analytic skill pools to develop knowledge-intelligence required to maximize benefit for the Oredo Digital Oil Field and transfer this knowledge to other NPDC Asset.


Author(s):  
Sorin Alexandru Gheorghiu ◽  
Cătălin Popescu

The present economic model is intended to provide an example of how to take into consideration risks and uncertainties in the case of a field that is developed with water injection. The risks and uncertainties are related, on one hand to field operations (drilling time, delays due to drilling problems, rig failures and materials supply, electric submersible pump [ESP] installations failures with the consequences of losing the well), and on the other hand, the second set of uncertainties are related to costs (operational expenditures-OPEX and capital expenditures-CAPEX, daily drilling rig costs), prices (oil, gas, separation, and water injection preparation), production profiles, and discount factor. All the calculations are probabilistic. The authors are intending to provide a comprehensive solution for assessing the business performance of an oil field development.


2017 ◽  
Vol 57 (2) ◽  
pp. 374
Author(s):  
Martin Anderson

On 2 September 2006 a reconnaissance aircraft Royal Air Force Nimrod XV230 suffered a catastrophic mid-air fire on a mission over Afghanistan, leading to the total loss of the aircraft and the death of all 14 service personnel. This paper summarises key issues from an independent inquiry and challenges the oil and gas industry to reflect on these. The author, a Chartered specialist in human and organisational factors, contributed to The Nimrod Review as a Specialist Inspector with the UK Health and Safety Executive.


2013 ◽  
Vol 135 (11) ◽  
Author(s):  
Rainer Kurz ◽  
J. Michael Thorp ◽  
Erik G. Zentmyer ◽  
Klaus Brun

Equipment sizing decisions in the oil and gas industry often have to be made based on incomplete data. Often, the exact process conditions are based on numerous assumptions about well performance, market conditions, environmental conditions, and others. Since the ultimate goal is to meet production commitments, the traditional method of addressing this is to use worst case conditions and often adding margins onto these. This will invariably lead to plants that are oversized, in some instances, by large margins. In reality, the operating conditions are very rarely the assumed worst case conditions, however, they are usually more benign most of the time. Plants designed based on worst case conditions, once in operation, will, therefore, usually not operate under optimum conditions, have reduced flexibility, and therefore cause both higher capital and operating expenses. The authors outline a new probabilistic methodology that provides a framework for more intelligent process-machine designs. A standardized framework using a Monte Carlo simulation and risk analysis is presented that more accurately defines process uncertainty and its impact on machine performance. Case studies are presented that highlight the methodology as applied to critical turbomachinery.


Author(s):  
Marco Mariottini ◽  
Nicola Pieroni ◽  
Pietro Bertini ◽  
Beniamino Pacifici ◽  
Alessandro Giorgetti

Abstract In the oil and gas industry, manufacturers are continuously engaged in providing machines with improved performance, reliability and availability. First Stage Bucket is one of the most critical gas turbine components, bearing the brunt of very severe operating conditions in terms of high temperature and stresses; aeromechanic behavior is a key characteristic to be checked, to assure the absence of resonances that can lead to damage. Aim of this paper is to introduce a method for aeromechanical verification applied to the new First Stage Bucket for heavy duty MS5002 gas turbine with integrated cover plates. This target is achieved through a significantly cheaper and streamlined test (a rotating test bench facility, formally Wheel Box Test) in place of a full engine test. Scope of Wheel Box Test is the aeromechanical characterization for both Baseline and New bucket, in addition to the validation of the analytical models developed. Wheel Box Test is focused on the acquisition and visualization of dynamic data, simulating different forcing frequencies, and the measurement of natural frequencies, compared with the expected results. Moreover, a Finite Elements Model (FEM) tuning for frequency prediction is performed. Finally, the characterization of different types of dampers in terms of impact on frequencies and damping effect is carried out. Therefore, in line with response assessment and damping levels estimation, the most suitable damper is selected. The proposed approach could be extended for other machine models and for mechanical audits.


Author(s):  
Marilia A. Ramos ◽  
Alex Almeida ◽  
Marcelo R. Martins

Abstract Several incidents in the offshore oil and gas industry have human errors among core events in incident sequence. Nonetheless, human error probabilities are frequently neglected by offshore risk estimation. Human Reliability Analysis (HRA) allows human failures to be assessed both qualitatively and quantitatively. In the petroleum industry, HRA is usually applied using generic methods developed for other types of operation. Yet, those may not sufficiently represent the particularities of the oil and gas industry. Phoenix is a model-based HRA method, designed to address limitations of other HRA methods. Its qualitative framework consists of three layers of analysis composed by a Crew Response Tree, a human response model, and a causal model. This paper applies a version of Phoenix, the Phoenix for Petroleum Refining Operations (Phoenix-PRO), to perform a qualitative assessment of human errors in the CDSM explosion. The CDSM was a FPSO designed to produce natural gas and oil to Petrobras in Brazil. On 2015 an explosion occurred leading to nine fatalities. Analyses of this accident have indicated a strong contribution of human errors. In addition to the application of the method, this paper discusses its suitability for offshore operations HRA analyses.


Sign in / Sign up

Export Citation Format

Share Document