Pore-Scale Oil Connectivity and Displacement by Controlled-Ionic-Composition Waterflooding Using Synchrotron X-Ray Microtomography

SPE Journal ◽  
2021 ◽  
pp. 1-8
Author(s):  
Tianzhu Qin ◽  
Paul Fenter ◽  
Mohammed AlOtaibi ◽  
Subhash Ayirala ◽  
Ali AlYousef

Summary Controlled-ionic-composition waterflooding is an economic and effective method to improve oil recovery in carbonate oil reservoirs. Recent studies show controlling the salinity and ionic composition of injection water can alter the wettability of carbonate mineral surfaces. The pore-scale oil connectivity and displacement by controlled-ionic-composition waterflooding in heterogeneous carbonate reservoirs, especially at the early stage, is still unclear. The goal of this study is to examine the role of ion concentrations and types in the oil displacement efficiency and investigate the impact of the waterflooding on the pore-scale oil displacement using the national synchrotron facility. A carbonate rock sample was flooded with synthetic high-salinity water and other water solutions with different sulfate concentrations. The waterflooding processes were visualized with synchrotron X-ray microtomography to follow the evolution of pore-scale oil/brine interactions at typical field flow rates. Experimental results show that the water with lower sulfate concentration and higher salinity did not change the wettability of the pore surfaces. Higher sulfate ion concentrations in the water, in contrast, altered the wettability of carbonate pore surfaces from oil-wet to neutral-wet within the first few minutes of waterflooding. Novel insight was gained on the ability of water with high-sulfate concentration to displace oil in the small pores and through abundant oil channels, which could consequently lead to higher oil recovery from the carbonate rock.

2021 ◽  
Vol 198 ◽  
pp. 108134
Author(s):  
Kamila Scheffer ◽  
Yves Méheust ◽  
Marcio S. Carvalho ◽  
Marcos H.P. Mauricio ◽  
Sidnei Paciornik

2020 ◽  
Author(s):  
Tianzhu Qin ◽  
Paul Fenter ◽  
Mohammed AlOtaibi ◽  
Subhash Ayirala ◽  
Ali AlYousef
Keyword(s):  
X Ray ◽  

2019 ◽  
Vol 134 ◽  
pp. 103432 ◽  
Author(s):  
Abdulla Alhosani ◽  
Alessio Scanziani ◽  
Qingyang Lin ◽  
Ziqing Pan ◽  
Branko Bijeljic ◽  
...  

HortScience ◽  
2005 ◽  
Vol 40 (3) ◽  
pp. 819-826 ◽  
Author(s):  
D.A. Devitt ◽  
R.L. Morris ◽  
L.K. Fenstermaker

We investigated foliar damage to five landscape species sprinkler irrigated with either reuse water or one of five synthesized saline waters that contained elevated single salts mixed with Colorado River water, all having similar electrical conductivities. The experiment allowed us to compare the impact of elevated concentrations of Na, Mg, Ca, Cl, and SO4 on an index of visual damage (IVD), tissue ion concentrations, and spectral reflectance. Waters containing elevated concentrations of MgCl2 or NaCl caused greater foliar damage than did MgSO4, Na2SO4, CaSO4, or reuse water, as recorded in higher IVD values (p < 0.05). Privet and elm were damaged to a greater extent (higher IVD values) than were desert willow, guava and laurel (p < 0.05). Higher IVD values were recorded for all species irrigated with the MgCl2 waters, with mortality recorded in privet. Tissue nutrient concentrations were correlated with the IVD values. In the case of guava, 61% of the variability in the IVD could be accounted for based on N, P and K (P < 0.01). On a treatment basis, the single salts added to the municipal water showed little correlation with the IVD values, except in the case of MgCl2, where Mg was included in the regression equation (r2 = 0.82, P < 0.01, IVD↑ as S04↓, Mg and P↑). Eleven different spectral indices separated based on treatment and/or species (P < 0.05). In elm, 70% of the variability in the IVD could be accounted for by including Red Edge, Normalized Difference Vegetation Index (NDVI) and Water Band Index (WBI)/NDVI. A mixed response was observed to a post 30-day irrigation rinse in an attempt to reduce IVD values. Based on our results, care should be given to monitoring not only the EC (and osmotic potential) but also the ionic composition when saline waters are blended with other water sources, with the aim of minimizing the concentration of Mg, Cl, and Na.


Author(s):  
Hemanta K. Sarma ◽  
Yi Zhang

It has been reported that the waterflood performance in carbonate reservoirs could be significantly ameliorated by tuning the injected brine salinity and ionic composition. Also, it is noted that the brine salinity affects the CO2 injection process. This study looked into such possible effects of brine chemistry on waterflood and CO2 injection for typical UAE carbonate reservoir conditions of high temperature and pressure (T = 120°C and P = 20.68MPa). Effects on waterflood performance were investigated experimentally by a series of flooding tests at temperatures of 70°C and 120°C. In addition, an imbibition test was conducted at 70°C, followed by wettability monitoring tests at 90°C to investigate the impact of brine salinity variations and ionic compositions on waterflood performance. The impact of brine salinity on CO2-brine system properties including CO2 solubility in brine, interfacial tension between CO2 and CO2-saturated brine, and density and viscosity of CO2-saturated brine were evaluated through correlation-based studies in conjunction with some experimental data. A mathematical pore-scale model was developed to assess the brine salinity effect on water-isolated oil recovery by CO2 diffusion through water barrier. This study led to the following findings: (1) Incremental oil recovery could be obtained by either reducing salinity or increasing sulfate concentration of the tertiary injected brine at both 70°C and 120°C. However, the incremental recovery was more remarkable at the higher temperature of 120°C. (2) At 70°C, lowering the water salinity is more effective than raising the sulfate concentration in injected water in terms of incremental oil recovery. It also exhibited a similar potential for increased oil recovery at 120°C. (3) Wettability monitoring tests showed that water-wetness of carbonate rock studied could be increased by either reducing the water salinity or increasing sulfate concentration of the surrounding water. This is consistent with the imbibition test, in which wettability alteration towards more water-wetness by low salinity water was noted. (4) Under typical UAE reservoir conditions, reducing the brine salinity could significantly enhance CO2 dissolution in brine, consequently inducing significant variation to the CO2-brine system properties. This would undoubtedly impact CO2 injection performance. (5) Under typical UAE reservoir conditions, the capacity and rate of CO2 diffusion through water barrier to oil phase could be significantly reinforced by lowering the brine salinity of the water barrier.


Sign in / Sign up

Export Citation Format

Share Document