Predicting Reservoir Fluid Properties from Advanced Mud Gas Data

2021 ◽  
pp. 1-9
Author(s):  
Tao Yang ◽  
Gulnar Yerkinkyzy ◽  
Knut Uleberg ◽  
Ibnu Hafidz Arief

Summary In a recent paper, we published a machine learning method to quantitatively predict reservoir fluid gas/oil ratio (GOR) from advanced mud gas (AMG) data. The significant increase of the model accuracy compared to traditional modeling approaches makes it possible to estimate reservoir fluid GOR based on AMG data while drilling, before the wireline operation. This approach has clear advantages because of early access, low cost, and a continuous reservoir fluid GOR for all reservoir zones. This paper releases further study results to predict other reservoir fluid properties in addition to GOR, which is essential for geo-operations, field development plans, and production optimization. Two approaches were selected to predict other reservoir fluid properties. As illustrated by the reservoir fluid density example, we developed machine learning models for individual reservoir fluid properties for the first approach, similar to the GOR prediction approach in the previous paper. As for the second approach, instead of developing many machine learning models for individual reservoir fluid property, we investigated the essential properties for equation of state (EOS) fluid characterization: C6 and C7+ composition and the molecular weight and density of the C7+ fraction. Once these properties are in place, the entire spectrum of reservoir fluid properties can be calculated with the EOS model. The results of reservoir fluid property prediction are satisfactory with both approaches. The reservoir oil density prediction has a mean average error (MAE) of 0.039 g/cm3. The accuracy is similar to the typical density derived from the pressure gradient from wireline logging data. For the essential fluid properties required for EOS model prediction, the overall accuracy is less than the laboratory measurements but acceptable as the early phase estimations. The reservoir fluid properties predicted from the EOS model are similar to the predictions from individual machine learning models. We applied the field measured AMG data into the reservoir fluid property models and achieved good results, as illustrated by the reservoir fluid density example. The previous paper completed the methodology to predict all reservoir fluid properties based on AMG data. This work paves the way to generate a complete reservoir fluid log for all relevant reservoir fluid properties while drilling. The method has a significant business impact, providing full coverage of reservoir fluid properties along the well path in the early drilling phase. The advantage of providing reservoir fluid properties in all reservoir zones while drilling far outweighs the limitation of somewhat reduced reservoir fluid property accuracy.

2021 ◽  
Vol 13 (24) ◽  
pp. 5140
Author(s):  
Chengbiao Fu ◽  
Anhong Tian ◽  
Daming Zhu ◽  
Junsan Zhao ◽  
Heigang Xiong

Soil salinization is a global ecological and environmental problem in arid and semi-arid areas that can be ameliorated via soil management, visible-near infrared-shortwave infrared (VNIR-SWIR) spectroscopy can be adapted to rapidly monitor soil salinity content. This study explored the potential of Grünwald–Letnikov fractional-order derivative (FOD), feature band selection methods, nonlinear partial least squares regression (PLSR), and four machine learning models to estimate the soil salinity content using VNIR-SWIR spectra. Ninety sample points were field scanned with VNIR-SWR and soil samples (0–20 cm) were obtained at the time of scanning. The samples points come from three zones representing different intensities of human interference (I, II, and III Zones) in Fukang, Xinjiang, China. Each zone contained thirty sample points. For modeling, we firstly adopted FOD (with intervals of 0.1 and range of 0–2) as a preprocessing method to analyze soil hyperspectral data. Then, four sets of spectral bands (R-FOD-FULL indicates full band range, R-FOD-CC5 bands that met a 0.05 significance test, R-FOD-CC1 bands that met a 0.01 significance test, and R-FOD-CC1-CARS represents CC1 combined with competitive adaptive reweighted sampling) were selected as spectral input variables to develop the estimation model. Finally, four machine learning models, namely, generalized regression neural network (GRNN), extreme learning machine (ELM), random forest (RF), and PLSR, to estimate soil salinity. Study results showed that (1) the heat map of correlation coefficient matrix between hyperspectral data and salinity indicated that FOD significantly improved the correlation. (2) The characteristic band variables extracted and used by R-FOD-CC1 were fewer in number, and redundancy between bands smaller than R-FOD-FULL and R-FOD-CC5, thus estimation accuracy of R-FOD-CC1 was higher than R-FOD-CC5 or R-FOD-FULL. A high prediction accuracy was achieved with a less complex calculation. (3) The GRNN model yielded the best salinity estimation in all three zones compared to ELM, BPNN, RF, and PLSR on the whole, whereas, the RF model had the worst estimation effect. The R-FOD-CC1-CARS-GRNN model yielded the best salinity estimation in I Zone with R2, RMSE and RPD of 0.7784, 1.8762, and 2.0568, respectively. The fractional order was 1.5 and estimation performance was great. The optimal model for predicting soil salinity in II and III Zone was, also, R-FOD-CC1-CARS-GRNN (R2 = 0.7912, RMSE = 3.4001, and RPD = 1.8985 in II Zone; R2 = 0.8192, RMSE = 6.6260, and RPD = 1.8190 in III Zone), with the fractional order of 1.7- and 1.6-, respectively, and the estimation performance were all fine. (4) The characteristic bands selected by the best model in I, II, and III Zones were 8, 9, and 11, respectively, which account for 0.45%, 0.51%, and 0.63%% of the full bands. This approach reduces the number of modeled band variables and simplifies the model structure.


Author(s):  
Bin Zheng ◽  
Yuchen Qiu ◽  
Faranak Aghaei ◽  
Seyedehnafiseh Mirniaharikandehei ◽  
Morteza Heidari ◽  
...  

AbstractIn order to develop precision or personalized medicine, identifying new quantitative imaging markers and building machine learning models to predict cancer risk and prognosis has been attracting broad research interest recently. Most of these research approaches use the similar concepts of the conventional computer-aided detection schemes of medical images, which include steps in detecting and segmenting suspicious regions or tumors, followed by training machine learning models based on the fusion of multiple image features computed from the segmented regions or tumors. However, due to the heterogeneity and boundary fuzziness of the suspicious regions or tumors, segmenting subtle regions is often difficult and unreliable. Additionally, ignoring global and/or background parenchymal tissue characteristics may also be a limitation of the conventional approaches. In our recent studies, we investigated the feasibility of developing new computer-aided schemes implemented with the machine learning models that are trained by global image features to predict cancer risk and prognosis. We trained and tested several models using images obtained from full-field digital mammography, magnetic resonance imaging, and computed tomography of breast, lung, and ovarian cancers. Study results showed that many of these new models yielded higher performance than other approaches used in current clinical practice. Furthermore, the computed global image features also contain complementary information from the features computed from the segmented regions or tumors in predicting cancer prognosis. Therefore, the global image features can be used alone to develop new case-based prediction models or can be added to current tumor-based models to increase their discriminatory power.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241917
Author(s):  
Malte Grosser ◽  
Susanne Gellißen ◽  
Patrick Borchert ◽  
Jan Sedlacik ◽  
Jawed Nawabi ◽  
...  

Background An accurate prediction of tissue outcome in acute ischemic stroke patients is of high interest for treatment decision making. To date, various machine learning models have been proposed that combine multi-parametric imaging data for this purpose. However, most of these machine learning models were trained using voxel information extracted from the whole brain, without taking differences in susceptibility to ischemia into account that exist between brain regions. The aim of this study was to develop and evaluate a local tissue outcome prediction approach, which makes predictions using locally trained machine learning models and thus accounts for regional differences. Material and methods Multi-parametric MRI data from 99 acute ischemic stroke patients were used for the development and evaluation of the local tissue outcome prediction approach. Diffusion (ADC) and perfusion parameter maps (CBF, CBV, MTT, Tmax) and corresponding follow-up lesion masks for each patient were registered to the MNI brain atlas. Logistic regression (LR) and random forest (RF) models were trained employing a local approach, which makes predictions using models individually trained for each specific voxel position using the corresponding local data. A global approach, which uses a single model trained using all voxels of the brain, was used for comparison. Tissue outcome predictions resulting from the global and local RF and LR models, as well as a combined (hybrid) approach were quantitatively evaluated and compared using the area under the receiver operating characteristic curve (ROC AUC), the Dice coefficient, and the sensitivity and specificity metrics. Results Statistical analysis revealed the highest ROC AUC and Dice values for the hybrid approach. With 0.872 (ROC AUC; LR) and 0.353 (Dice; RF), these values were significantly higher (p < 0.01) than the values of the two other approaches. In addition, the local approach achieved the highest sensitivity of 0.448 (LR). Overall, the hybrid approach was only outperformed in sensitivity (LR) by the local approach and in specificity by both other approaches. However, in these cases the effect sizes were comparatively small. Conclusion The results of this study suggest that using locally trained machine learning models can lead to better lesion outcome prediction results compared to a single global machine learning model trained using all voxel information independent of the location in the brain.


2020 ◽  
Vol 2 (1) ◽  
pp. 3-6
Author(s):  
Eric Holloway

Imagination Sampling is the usage of a person as an oracle for generating or improving machine learning models. Previous work demonstrated a general system for using Imagination Sampling for obtaining multibox models. Here, the possibility of importing such models as the starting point for further automatic enhancement is explored.


2021 ◽  
Author(s):  
Norberto Sánchez-Cruz ◽  
Jose L. Medina-Franco

<p>Epigenetic targets are a significant focus for drug discovery research, as demonstrated by the eight approved epigenetic drugs for treatment of cancer and the increasing availability of chemogenomic data related to epigenetics. This data represents a large amount of structure-activity relationships that has not been exploited thus far for the development of predictive models to support medicinal chemistry efforts. Herein, we report the first large-scale study of 26318 compounds with a quantitative measure of biological activity for 55 protein targets with epigenetic activity. Through a systematic comparison of machine learning models trained on molecular fingerprints of different design, we built predictive models with high accuracy for the epigenetic target profiling of small molecules. The models were thoroughly validated showing mean precisions up to 0.952 for the epigenetic target prediction task. Our results indicate that the herein reported models have considerable potential to identify small molecules with epigenetic activity. Therefore, our results were implemented as freely accessible and easy-to-use web application.</p>


Sign in / Sign up

Export Citation Format

Share Document