Application of Machine Learning Techniques for Real Time Rate of Penetration Optimization

2021 ◽  
Author(s):  
Asad Mustafa Elmgerbi ◽  
Clemens Peter Ettinger ◽  
Peter Mbah Tekum ◽  
Gerhard Thonhauser ◽  
Andreas Nascimento

Abstract Over the past decade, several models have been generated to predict Rate of Penetration (ROP) in real-time. In general, these models can be classified into two categories, model-driven (analytical models) and data-driven models (based on machine learning techniques), which is considered as cutting-edge technology in terms of predictive accuracy and minimal human interfering. Nevertheless, most existing machine learning models are mainly used for prediction, not optimization. The ROP ahead of the bit for a certain formation layer can be predicted with such methods, but the limitation of the applications of these techniques is to find an optimum set of operating parameters for the optimization of ROP. In this regard, two data-driven models for ROP prediction have been developed and thereafter have been merged into an optimizer model. The purpose of the optimization process is to seek the ideal combinations of drilling parameters that would lead to an improvement in the ROP in real-time for a given formation. This paper is mainly focused on describing the process of development to create smart data-driven models (built on MATLAB software environment) for real-time rate of penetration prediction and optimization within a sufficient time span and without disturbing the drilling process, as it is typically required by a drill-off test. The used models here can be classified into two groups: two predictive models, Artificial Neural Network (ANN) and Random Forest (RF), in addition to one optimizer, namely genetic algorithm. The process started by developing, optimizing, and validation of the predictive models, which subsequently were linked to the genetic algorithm (GA) for real-time optimization. Automated optimization algorithms were integrated into the process of developing the productive models to improve the model efficiency and to reduce the errors. In order to validate the functionalities of the developed ROP optimization model, two different cases were studied. For the first case, historical drilling data from different wells were used, and the results confirmed that for the three known controllable surface drilling parameters, weight on bit (WOB) has the highest impact on ROP, followed by flow rate (FR) and finally rotation per minute (RPM), which has the least impact. In the second case, a laboratory scaled drilling rig "CDC miniRig" was utilized to validate the developed model, during the validation only the previous named parameters were used. Several meters were drilled through sandstone cubes at different weights on bit, rotations per minute, and flow rates to develop the productive models; then the optimizer was activated to propose the optimal set of the used parameters, which likely maximize the ROP. The proposed parameters were implemented, and the results showed that ROP improved as expected.

2021 ◽  
Vol 73 (10) ◽  
pp. 63-64
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 201696, “Robust Data-Driven Well-Performance Optimization Assisted by Machine-Learning Techniques for Natural-Flowing and Gas-Lift Wells in Abu Dhabi,” by Iman Al Selaiti, Carlos Mata, SPE, and Luigi Saputelli, SPE, ADNOC, et al., prepared for the 2020 SPE Annual Technical Conference and Exhibition, originally scheduled to be held in Denver, Colorado, 5–7 October. The paper has not been peer reviewed. Despite being proven to be a cost-effective surveillance initiative, remote monitoring is still not adopted in more than 60% of oil and gas fields around the world. Understanding the value of data through machine-learning (ML) techniques is the basis for establishing a robust surveillance strategy. In the complete paper, the authors develop a data-driven approach, enabled by artificial-intelligence methodologies including ML, to find an optimal operating envelope for gas-lift wells. Real-Time Well-Performance Optimization Wellsite Measurement and Control. - Flow Tests. - Past tests include sporadic measurement of multiphase rates and the associated flowing pressure and temperature, collected at various points of the production system, from bottomhole to separator conditions. Flow tests are also known as well tests; however, the authors use the term “flow test” in this paper to avoid confusion with well testing as used in pressure transient tests, including temporary shut-in pressure buildups (for producers) and pressure falloff tests (for injectors). Normally, a well would have limited data points from the past well tests (i.e., less than 50 valid flow tests in a period of 5–10 years). This data is the basis of creating ML models. Continuous Monitoring. - Every well should have adequate instrumentation, and its supporting infrastructure should include reliable power supply, minimum latency telemetry, and desktop access to production parameters. Alignment among real-time data and relational databases is required. Remote Control and Automated Actuation. - In addition to controllable valves, every well should be enabled with actuators to control the process variables. Remote control allows the operator to make changes to the current well-site configuration. Regulatory and Supervisory Control. - The value of automated closed-loop regulatory and supervisory control is to sustain optimal production while providing high well availability. Real-Time Production Optimization. - Continuous production optimization means that expected performance is challenged frequently by updating an optimal forecast with upper-level targets and current asset status. This is achieved by applying actions that close the gap between actual and expected performance. Faster surveillance loops compare actual vs. expected performance to determine minute, hourly, and daily gaps. A slower surveillance loop updates the asset’s expected performance. Well-Management Guidelines. - These are established, known limits to address and honor restrictions such as concession-contract obligations and legal limits, optimal reservoir management, flow assurance, economics, safety, and integrity.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3100
Author(s):  
Anusha Mairpady ◽  
Abdel-Hamid I. Mourad ◽  
Mohammad Sayem Mozumder

The selection of nanofillers and compatibilizing agents, and their size and concentration, are always considered to be crucial in the design of durable nanobiocomposites with maximized mechanical properties (i.e., fracture strength (FS), yield strength (YS), Young’s modulus (YM), etc). Therefore, the statistical optimization of the key design factors has become extremely important to minimize the experimental runs and the cost involved. In this study, both statistical (i.e., analysis of variance (ANOVA) and response surface methodology (RSM)) and machine learning techniques (i.e., artificial intelligence-based techniques (i.e., artificial neural network (ANN) and genetic algorithm (GA)) were used to optimize the concentrations of nanofillers and compatibilizing agents of the injection-molded HDPE nanocomposites. Initially, through ANOVA, the concentrations of TiO2 and cellulose nanocrystals (CNCs) and their combinations were found to be the major factors in improving the durability of the HDPE nanocomposites. Further, the data were modeled and predicted using RSM, ANN, and their combination with a genetic algorithm (i.e., RSM-GA and ANN-GA). Later, to minimize the risk of local optimization, an ANN-GA hybrid technique was implemented in this study to optimize multiple responses, to develop the nonlinear relationship between the factors (i.e., the concentration of TiO2 and CNCs) and responses (i.e., FS, YS, and YM), with minimum error and with regression values above 95%.


2021 ◽  
Author(s):  
K. Emma Knowland ◽  
Christoph Keller ◽  
Krzysztof Wargan ◽  
Brad Weir ◽  
Pamela Wales ◽  
...  

<p>NASA's Global Modeling and Assimilation Office (GMAO) produces high-resolution global forecasts for weather, aerosols, and air quality. The NASA Global Earth Observing System (GEOS) model has been expanded to provide global near-real-time 5-day forecasts of atmospheric composition at unprecedented horizontal resolution of 0.25 degrees (~25 km). This composition forecast system (GEOS-CF) combines the operational GEOS weather forecasting model with the state-of-the-science GEOS-Chem chemistry module (version 12) to provide detailed analysis of a wide range of air pollutants such as ozone, carbon monoxide, nitrogen oxides, and fine particulate matter (PM2.5). Satellite observations are assimilated into the system for improved representation of weather and smoke. The assimilation system is being expanded to include chemically reactive trace gases. We discuss current capabilities of the GEOS Constituent Data Assimilation System (CoDAS) to improve atmospheric composition modeling and possible future directions, notably incorporating new observations (TROPOMI, geostationary satellites) and machine learning techniques. We show how machine learning techniques can be used to correct for sub-grid-scale variability, which further improves model estimates at a given observation site.</p>


2021 ◽  
Author(s):  
Hugo Abreu Mendes ◽  
João Fausto Lorenzato Oliveira ◽  
Paulo Salgado Gomes Mattos Neto ◽  
Alex Coutinho Pereira ◽  
Eduardo Boudoux Jatoba ◽  
...  

Within the context of clean energy generation, solar radiation forecast is applied for photovoltaic plants to increase maintainability and reliability. Statistical models of time series like ARIMA and machine learning techniques help to improve the results. Hybrid Statistical + ML are found in all sorts of time series forecasting applications. This work presents a new way to automate the SARIMAX modeling, nesting PSO and ACO optimization algorithms, differently from R's AutoARIMA, its searches optimal seasonality parameter and combination of the exogenous variables available. This work presents 2 distinct hybrid models that have MLPs as their main elements, optimizing the architecture with Genetic Algorithm. A methodology was used to obtain the results, which were compared to LSTM, CLSTM, MMFF and NARNN-ARMAX topologies found in recent works. The obtained results for the presented models is promising for use in automatic radiation forecasting systems since it outperformed the compared models on at least two metrics.


2021 ◽  
Author(s):  
Hongbao Zhang ◽  
Baoping Lu ◽  
Lulu Liao ◽  
Hongzhi Bao ◽  
Zhifa Wang ◽  
...  

Abstract Theoretically, rate of penetration (ROP) model is the basic to drilling parameters design, ROP improvement tools selection and drill time & cost estimation. Currently, ROP modelling is mainly conducted by two approaches: equation-based approach and machine learning approach, and machine learning performs better because of the capacity in high-dimensional and non-linear process modelling. However, in deep or deviated wells, the ROP prediction accuracy of machine learning is always unsatisfied mainly because the energy loss along the wellbore and drill string is non-negligible and it's difficult to consider the effect of wellbore geometry in machine learning models by pure data-driven methods. Therefore, it's necessary to develop robust ROP modelling method for different scenarios. In the paper, the performance of several equation-based methods and machine learning methods are evaluated by data from 82 wells, the technical features and applicable scopes of different methods are analysed. A new machine learning based ROP modelling method suitable for different well path types was proposed. Integrated data processing pipeline was designed to dealing with data noises, data missing, and discrete variables. ROP effecting factors were analysed, including mechanical parameters, hydraulic parameters, bit characteristics, rock properties, wellbore geometry, etc. Several new features were created by classic drilling theories, such as downhole weight on bit (DWOB), hydraulic impact force, formation heterogeneity index, etc. to improve the efficiency of learning from data. A random forest model was trained by cross validation and hyperparameters optimization methods. Field test results shows that the model could predict the ROP in different hole sections (vertical, deviated and horizontal) and different drilling modes (sliding and rotating drilling) and the average accuracy meets the requirement of well planning. A novel data processing and feature engineering workflow was designed according the characteristics of ROP modelling in different well path types. An integrated data-driven ROP modelling and optimization software was developed, including functions of mechanical specific energy analysis, bit wear analysis and predict, 2D & 3D ROP sensitivity analysis, offset wells benchmark, ROP prediction, drilling parameters constraints analysis, cost per meter prediction, etc. and providing quantitative evidences for drilling parameters optimization, drilling tools selection and well time estimation.


Sign in / Sign up

Export Citation Format

Share Document