Investigating the Performance of Various FCD Geometries for SAGD Applications

2021 ◽  
Author(s):  
Kousha Gohari ◽  
Julian Ortiz ◽  
Anson Abraham ◽  
Oscar Becerra Moreno ◽  
Mazda Irani ◽  
...  

Abstract Steam-Assisted Gravity Drainage (SAGD) is a complex process that often requires more control relative to conventional applications during production operations. Flow Control Devices (FCDs) have been identified as one of the technologies that offer improved downhole steam utilization and injection/production efficiency. The first FCD completions, with a helical geometry, were installed in SAGD wells at the ConocoPhillips Surmont project over a decade ago. The installations have shown improved steam chamber conformance and reduced steam-oil ratio (SOR) while accelerating bitumen production. Since then, various FCD geometries have been investigated and used, with several of them explicitly designed with a steam blocking capability. This study used a numerical simulator to investigate the performance of these various FCD geometries. This comprehensive study started testing several geometries in a flow loop and using the data obtained to develop a mechanistic model to characterize the flow performance of the FCDs and finally evaluating their performance in a holistic manner via a numerical simulator. By using mechanistic modeling, it was ensured that the performance of the devices was accurately represented, and the physics of the process were considered. The analysis used a commercially available numerical simulator to evaluate the performance of the various FCD geometries in SAGD operation. Three sector models representing different reservoir qualities observed in Surmont were used for the analysis. Additionally, various operating strategies were investigated for each sector model to ensure that a comprehensive understanding of each FCD geometry was achieved. The results of this study showed that FCD flow resistance setting or nozzle size played a significant role in the production performance of the wells in liner deployed FCD applications. Additionally, the steam blocking geometries resulted in increased cumulative production and lower SOR relative to other geometries. The FCD geometry did also impact the development of the steam chamber. Nevertheless, if the FCD completions are configured with the proper flow resistance setting or nozzle size, they provide a proactive measure, which leads to significantly better performance compared to a non-FCD completion. With lower subcool, the geometry of the FCD has a greater impact on the performance of the well. It was also confirmed that an aggressive operating strategy results in better performance of the FCD completions.

2014 ◽  
Vol 19 ◽  
pp. 303-310 ◽  
Author(s):  
Wei Shaolei ◽  
Cheng Linsong ◽  
Huang Wenjun ◽  
Huang Shijun ◽  
Liu Shuai

2021 ◽  
Author(s):  
Hamid Pourpak ◽  
Samuel Taubert ◽  
Marios Theodorakopoulos ◽  
Arnaud Lefebvre-Prudencio ◽  
Chay Pointer ◽  
...  

Abstract The Diyab play is an emerging unconventional play in the Middle East. Up to date, reservoir characterization assessments have proved adequate productivity of the play in the United Arab Emirates (UAE). In this paper, an advanced simulation and modeling workflow is presented, which was applied on selected wells located on an appraisal area, by integrating geological, geomechanical, and hydraulic fracturing data. Results will be used to optimize future well landing points, well spacing and completion designs, allowing to enhance the Stimulated Rock Volume (SRV) and its consequent production. A 3D static model was built, by propagating across the appraisal area, all subsurface static properties from core-calibrated petrophysical and geomechanical logs which originate from vertical pilot wells. In addition, a Discrete Fracture Network (DFN) derived from numerous image logs was imported in the model. Afterwards, completion data from one multi-stage hydraulically fracked horizontal well was integrated into the sector model. Simulations of hydraulic fracturing were performed and the sector model was calibrated to the real hydraulic fracturing data. Different scenarios for the fracture height were tested considering uncertainties related to the fracture barriers. This has allowed for a better understanding of the fracture propagation and SRV creation in the reservoir at the main target. In the last step, production resulting from the SRV was simulated and calibrated to the field data. In the end, the calibrated parameters were applied to the newly drilled nearby horizontal wells in the same area, while they were hydraulically fractured with different completion designs and the simulated SRVs of the new wells were then compared with the one calculated on the previous well. Applying a fully-integrated geology, geomechanics, completion and production workflow has helped us to understand the impact of geology, natural fractures, rock mechanical properties and stress regimes in the SRV geometry for the unconventional Diyab play. This work also highlights the importance of data acquisition, reservoir characterization and of SRV simulation calibration processes. This fully integrated workflow will allow for an optimized completion strategy, well landing and spacing for the future horizontal wells. A fully multi-disciplinary simulation workflow was applied to the Diyab unconventional play in onshore UAE. This workflow illustrated the most important parameters impacting the SRV creation and production in the Diyab formation for he studied area. Multiple simulation scenarios and calibration runs showed how sensitive the SRV can be to different parameters and how well placement and fracture jobs can be possibly improved to enhance the SRV creation and ultimately the production performance.


Author(s):  
Qichen Zhang ◽  
Xiaodong Kang ◽  
Huiqing Liu ◽  
Xiaohu Dong ◽  
Jian Wang

AbstractCurrently, the reservoir heterogeneity is a serious challenge for developing oil sands with SAGD method. Nexen’s Long Lake SAGD project reported that breccia interlayer was widely distributed in lower and middle part of reservoir, impeding the steam chamber expansion and heated oil drainage. In this paper, two physical experiments were conducted to study the impact of breccia interlayer on development of steam chamber and production performance. Then, a laboratory scale numerical simulation model was established and a history match was conducted based on the 3D experimental results. Finally, the sensitivity analysis of thickness and permeability of breccia layer was performed. The influence mechanism of breccia layer on SAGD performance was analyzed by comparing the temperature profile of steam chamber and production dynamics. The experimental results indicate that the existence of breccia interlayer causes a thinner steam chamber profile and longer time to reach the peak oil rate. And, the ultimate oil recovery reduced 15.8% due to much oil stuck in breccia interlayer areas. The numerical simulation results show that a lower permeability in breccia layer area has a serious adverse impact on oil recovery if the thickness of breccia layer is larger, whereas the effect of permeability on SAGD performance is limited when the breccia layer is thinner. Besides, a thicker breccia layer can increase the time required to reach the peak oil rate, but has a little impact on the ultimate oil recovery.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zhijie Wei ◽  
Xiaodong Kang ◽  
Yuyang Liu ◽  
Hanxu Yang

Injection conformance reversion commonly observed during polymer flooding in offshore heterogeneous heavy-oil reservoirs weakens the volumetric sweep of polymer solution and compromises its EOR results. To investigate its mechanisms and impact factors, one mathematical model to predicate injection conformance behavior is constructed for heterogeneous reservoirs based on the Buckley-Leverett function. The different suction capability of each layer to polymer solution results in distinct change law of the flow resistance force, which in turn reacts upon the suction capability and creates dynamic redistribution of injection between layers. Conformance reversion takes place when the variation ratio of flow resistance force of different layers tends to be the same. The peak value and scope of conformance reversion decrease and reversion timing is advanced as oil viscosity or permeability contrast increases, or polymer concentration or relative thickness of low permeable layer decreases, which compromises the ability of polymer flooding to improve the volumetric sweep and lower suction of the low permeable layer. The features of offshore polymer flooding tend to make the injection conformance V-type and create low-efficiency circulation of polymer in a high permeable layer more easily. These results can provide guidance to improve the production performance of polymer flooding in offshore heterogeneous heavy-oil reservoirs.


2020 ◽  
Author(s):  
Thijs Defraeye ◽  
Flora Bahrami ◽  
Rene M Rossi

Transdermal drug delivery systems are a key technology to administer drugs with a high first-pass effect in a non-invasive and controlled way. Physics-based modeling and simulation are on their way to become a cornerstone in the engineering of these healthcare devices since it provides a unique complementarity to experimental data and insights. Simulations enable to virtually probe the drug transport inside the skin at each point in time and space. However, the tedious experimental or numerical determination of material properties currently forms a bottleneck in the modeling workflow. We show that multiparameter inverse modeling to determine the drug diffusion and partition coefficients is a fast and reliable alternative. We demonstrate this strategy for transdermal delivery of fentanyl. We found that inverse modeling reduced the normalized root mean square deviation of the measured drug uptake flux from 26 to 9%, when compared to the experimental measurement of all skin properties. We found that this improved agreement with experiments was only possible if the diffusion in the reservoir holding the drug was smaller than the experimentally-measured diffusion coefficients suggested. For indirect inverse modeling, which systematically explores the entire parametric space, 30 000 simulations were required. By relying on direct inverse modeling, we reduced the number of simulations to be performed to only 300, so a factor 100 difference. The modeling approach's added value is that it can be calibrated once in-silico for all model parameters simultaneously by solely relying on a single measurement of the drug uptake flux evolution over time. We showed that this calibrated model could accurately be used to simulate transdermal patches with other drug doses. We showed that inverse modeling is a fast way to build up an accurate mechanistic model for drug delivery. This strategy opens the door to clinically-ready therapy that is tailored to patients.


2018 ◽  
Author(s):  
Yun Xia ◽  
Shijun Huang ◽  
Xiao Chen ◽  
Meng Cao ◽  
Lijie Yang

2019 ◽  
Vol 25 (2) ◽  
pp. 308-321 ◽  
Author(s):  
Arfan Majeed ◽  
Jingxiang Lv ◽  
Tao Peng

Purpose This paper aims to present an overall framework of big data-based analytics to optimize the production performance of additive manufacturing (AM) process. Design/methodology/approach Four components, namely, big data application, big data sensing and acquisition, big data processing and storage, model establishing, data mining and process optimization were presented to comprise the framework. Key technologies including the big data acquisition and integration, big data mining and knowledge sharing mechanism were developed for the big data analytics for AM. Findings The presented framework was demonstrated by an application scenario from a company of three-dimensional printing solutions. The results show that the proposed framework benefited customers, manufacturers, environment and even all aspects of manufacturing phase. Research limitations/implications This study only proposed a framework, and did not include the realization of the algorithm for data analysis, such as association, classification and clustering. Practical implications The proposed framework can be used to optimize the quality, energy consumption and production efficiency of the AM process. Originality/value This paper introduces the concept of big data in the field of AM. The proposed framework can be used to make better decisions based on the big data during manufacturing process.


Geophysics ◽  
2015 ◽  
Vol 80 (2) ◽  
pp. WA99-WA111 ◽  
Author(s):  
Anya Reitz ◽  
Richard Krahenbuhl ◽  
Yaoguo Li

There is presently an increased need to monitor production efficiency as heavy oil reservoirs become more economically viable. We present a feasibility study of monitoring steam-assisted gravity drainage (SAGD) reservoirs using time-lapse gravimetry and gravity gradiometry. Even though time-lapse seismic has historically shown great success for SAGD monitoring, the gravimetry and gravity gradiometry methods offer a low-cost interseismic alternative that can complement the seismic method, increase the survey frequency, and decrease the cost of monitoring. In addition, both gravity-based methods are directly sensitive to the density changes that occur as a result of the replacement of heavy oil by steam. Advances in technologies have made both methods viable candidates for consideration in time-lapse reservoir monitoring, and we have numerically evaluated their potential application in monitoring SAGD production. The results indicate that SAGD production should produce a strong anomaly for both methods at typical SAGD reservoir depths. However, the level of detail for steam-chamber geometries and separations that can be recovered from the gravimetry and gravity gradiometry data is site dependent. Gravity gradiometry shows improved monitoring ability, such as better recovery of nonuniform steam movement due to reservoir heterogeneity, at shallower production reservoirs. Gravimetry has the ability to detect SAGD steam-chamber growth to greater depths than does gravity gradiometry, although with decreasing resolution of the expanding steam chambers.


Author(s):  
Zhou-Long Li ◽  
Li-Min Zhu

In five-axis milling, the bottom edge of a flat end mill is probably involved in cutting when the lead angle of tool axis changes to negative. The mechanistic model will lose accuracy if the bottom edge cutting effect is neglected. In this paper, an improved mechanistic model of five-axis machining with a flat end mill is presented to accurately predict cutting forces by combining the cutting effects of both side and bottom edges. Based on the kinematic analysis of the radial line located at the tool bottom part, the feasible contact radial line (FCRL) is analytically extracted. Then, boundaries of the bottom cutter-workpiece engagements (CWEs) are obtained by intersecting the FCRL with workpiece surfaces and identifying the inclusion relation of its endpoints with the workpiece volume. Next, an analytical method is proposed to calculate the cutting width and the chip area by considering five-axis motions of the tool. Finally, the method of calibrating bottom-cutting force coefficients by conducting a series of plunge milling tests at various feedrates is proposed, and the improved mechanistic model is then applied to predict cutting forces. The five-axis milling with a negative lead angle and the rough machining of an aircraft engine blisk are carried out to test the effectiveness and practicability of the proposed model. The results indicate that it is essential to take into account the bottom edge cutting effect for accurate prediction of cutting forces at tool path zones where the tool bottom part engages with the workpiece.


2017 ◽  
Vol 139 (7) ◽  
Author(s):  
Sara Vahaji ◽  
Sherman Chi Pok Cheung ◽  
Guan Heng Yeoh ◽  
Jiyuan Tu

Modeling subcooled boiling flows in vertical channels has relied heavily on the utilization of empirical correlations for the active nucleation site density, bubble departure diameter, and bubble departure frequency. Following the development and application of mechanistic modeling at low pressures, the capability of the model to resolve flow conditions at elevated pressure up to 10 bar is thoroughly assessed and compared with selected empirical models. Predictions of the mechanistic and selected empirical models are validated against two experimental data at low to elevated pressures. The results demonstrate that the mechanistic model is capable of predicting the heat and mass transfer processes. In spite of some drawbacks of the currently adopted force balance model, the results still point to the great potential of the mechanistic model to predict a wide range of flow conditions in subcooled boiling flows.


Sign in / Sign up

Export Citation Format

Share Document