Theoretical and Numerical Investigation of Supersonic Multiphase Gas Injection

2021 ◽  
Author(s):  
Da Zhu ◽  
Mohan Sivagnanam ◽  
Ian Gates

Abstract Supersonic gas injection can help deliver gas uniformly to a reservoir, regardless of reservoir conditions. This technology has played a key role in enhanced oil recovery (EOR) and in particular, thermal enhanced oil recovery operations. Most previous studies have focused on single phase gas injection whereas in most field applications, multiphase and multicomponent situations occur. In the research documented in this paper, we report on results of evaluations of compressible multiphase supersonic gas flows in which gas is the continuous phase is seeded with dispersed liquid droplets or solid particles. Theoretical derivation and numerical simulations with and without relative motions between continuous and disperse phases are examined first. The results illustrate that the shock wave structures and flow properties associated with the multiphase gas flows are different than that of single-phase isentropic flows. The existence and importance of relaxation zones after the normal shock wave in multiphase flow is described. Numerical computational fluid dynamics (CFD) simulations are conducted to show how the multiphase multicomponent flow affects gas phase injection under different conditions. The impact of solid/liquid mass loading on flow performance is discussed. Finally, the practical application of the findings is discussed.

2019 ◽  
Vol 10 (4) ◽  
pp. 1575-1589
Author(s):  
Aminu Yau Kaita ◽  
Oghenerume Ogolo ◽  
Xingru Wu ◽  
Isah Mohammed ◽  
Emmanuel Akaninyene Akpan

AbstractSour gas reservoirs have faced critics for environmental concerns and hazards, necessitating a novel outlook to how the produced sour gases could be either utilized or carefully disposed. Over the years of research and practice, several methods of sour gas processing and utilization have been developed, from the solid storage of sulfur to reinjecting the sour gas into producing or depleted light oil reservoir for miscible flooding enhanced oil recovery. This paper seeks to investigate the impact of injection parameters on the performance of sour gas injection for enhance oil recovery. In designing a miscible gas flooding project, empirical correlations are used and the key parameter which impacts the phase behavior is identified to be the minimum miscibility pressure (MMP). A compositional simulator was utilized in this research work to study the effect of injection parameters such as minimum miscibility pressure, acid gas concentration, injection pressure and injection rate on the performance of miscible sour gas injection for enhanced oil recovery. The findings showed that methane concentration had a significant impact on the MMP of the process. Additionally, an increase in acid gas concentration decreases the MMP of the process as a result of an increase in gas viscosity, consequently extending the plateau period resulting in late gas breakthrough and increased overall recovery of the process.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2346
Author(s):  
Mirosław Wojnicki ◽  
Jan Lubaś ◽  
Marcin Warnecki ◽  
Jerzy Kuśnierczyk ◽  
Sławomir Szuflita

Crucial oil reservoirs are located in naturally fractured carbonate formations and are currently reaching a mature phase of production. Hence, a cost-effective enhanced oil recovery (EOR) method is needed to achieve a satisfactory recovery factor. The paper focuses on an experimental investigation of the efficiency of water alternating sour and high-nitrogen (~85% N2) natural gas injection (WAG) in mixed-wetted carbonates that are crucial reservoir rocks for Polish oil fields. The foam-assisted water alternating gas method (FAWAG) was also tested. Both were compared with continuous water injection (CWI) and continuous gas injection (CGI). A series of coreflooding experiments were conducted within reservoir conditions (T = 126 ℃, P = 270 bar) on composite cores, and each consisted of four reservoir dolomite core plugs and was saturated with the original reservoir fluids. In turn, some of the experiments were conducted on artificially fractured cores to evaluate the impact of fractures on recovery efficiency. The performance evaluation of the tested methods was carried out by comparing oil recoveries from non-fractured composite cores, as well as fractured. In the case of non-fractured cores, the WAG injection outperformed continuous gas injection (CGI) and continuous water injection (CWI). As expected, the presence of fractures significantly reduced performance of WAG, CGI and CWI injection modes. In contrast, with regard to FAWAG, deployment of foam flow in the presence of fractures remarkably enhanced oil recovery, which confirms the possibility of using the FAWAG method in situations of premature gas breakthrough. The positive results encourage us to continue the research of the potential uses of this high-nitrogen natural gas in EOR, especially in the view of the utilization of gas reservoirs with advantageous location, high reserves and reservoir energy.


2005 ◽  
Author(s):  
Frederic Maubeuge ◽  
Danielle Christine Morel ◽  
Jean-Pierre Charles Fossey ◽  
Said Hunedi ◽  
Jacques Albert Danquigny

2021 ◽  
pp. 79-90
Author(s):  
Т. A. Pospelova

The article discusses ways to increase the oil recovery factor in already developed fields, special attention is paid to the methods of enhanced oil recovery. The comparative structure of oil production in Russia in the medium term is given. The experience of oil and gas companies in the application of enhanced oil recovery in the fields is analyzed and the dynamics of the growth in the use of various enhanced oil recovery in Russia is estimated. With an increase in the number of operations in the fields, the requirements for the selection of candidates inevitably increase, therefore, the work focuses on hydrodynamic modeling of physical and chemical modeling, highlights the features and disadvantages of existing simulators. The main dependences for adequate modeling during polymer flooding are given. The calculation with different concentration of polymer solution is presented, which significantly affects the water cut and further reduction of operating costs for the preparation of the produced fluid. The possibility of creating a specialized hydrodynamic simulator for low-volume chemical enhanced oil recovery is considered, since mainly simulators are applicable for chemical waterflooding and the impact is on the formation as a whole.


2018 ◽  
Vol 3 (44) ◽  
pp. 12461-12468
Author(s):  
Lei Jiang ◽  
Jingtao Sun ◽  
Jiqian Wang ◽  
Qi Xue ◽  
Songyan Li ◽  
...  

Author(s):  
Muhammad Khan Memon ◽  
Ubedullah Ansari ◽  
Habib U Zaman Memon

In the surfactant alternating gas injection, the injected surfactant slug is remained several days under reservoir temperature and salinity conditions. As reservoir temperature is always greater than surface temperature. Therefore, thermal stability of selected surfactants use in the oil industry is almost important for achieving their long-term efficiency. The study deals with the screening of individual and blended surfactants for the applications of enhanced oil recovery that control the gas mobility during the surfactant alternating gas injection. The objective is to check the surfactant compatibility in the presence of formation water under reservoir temperature of 90oC and 120oC. The effects of temperature and salinity on used surfactant solutions were investigated. Anionic surfactant Alpha Olefin Sulfonate (AOSC14-16) and Internal Olefin Sulfonate (IOSC15-18) were selected as primary surfactants. Thermal stability test of AOSC14-16 with different formation water salinity was tested at 90oC and 120oC. Experimental result shows that, no precipitation was observed by surfactant AOSC14-16 when tested with different salinity at 90oC and 120oC. Addition of amphoteric surfactant Lauramidopropylamide Oxide (LMDO) with AOSC14-16 improves the stability in the high percentage of salinity at same temperature, whereas, the surfactant blend of IOSC15-18 and Alcohol Aloxy Sulphate (AAS) was resulted unstable. The solubility and chemical stability at high temperature and high salinity condition is improved by the blend of AOSC14-16+LMDO surfactant solution. This blend of surfactant solution will help for generating stable foam for gas mobility control in the methods of chemical Enhanced Oil Recovery (EOR).


Sign in / Sign up

Export Citation Format

Share Document