Degradable Loss Control System for Coiled Tubing Interventions

2021 ◽  
Author(s):  
Courtney Payne ◽  
Sergio Rondon Fajardo

Abstract Coiled tubing (CT) milling and cleanout interventions depend heavily on the circulation of fluids and debris throughout a wellbore. When these interventions are performed on lateral wells which are subhydrostatic or are not able to sustain a stable column of fluid during the operation, they pose unique challenges. This is mostly due to the inability of the well to support a column of fluid, which consequently causes circulation over long distances and along narrow annular spaces to be difficult or impossible, particularly when a thief zone is present. The many consequences of poor to nonexistent fluid circulation can be severe, ranging from poor hole cleaning and formation damage to inducing a stuck pipe scenario. Over the years, many mechanical and chemical solutions have been employed to improve fluid circulation in subhydrostatic wells, but each comes with its own set of challenges and can be costly to implement. Two methods commonly used today to improve debris removal from a low-pressure wellbore include the use of nitrogen and the creation of an underbalanced condition in the wellbore by flowing formation fluids. The former is expensive, time consuming, and requires advance bottomhole assembly (BHA) planning whereas the latter can lead to significant formation damage or a reduction in fracture conductivity through the removal of proppant from the near-wellbore area. A fiber- and particulate-laden degradable loss control system (LCS) is proposed as an improvement on the current techniques used to improve circulation in subhydrostatic wells. The LCS temporarily prevents losses to the reservoir and enables the circulation of debris out of the well. The system was applied to low-pressure wells in North America to demonstrate its effectiveness in addressing the reduction or loss of circulation throughout the wellbore and improving debris transport to surface.

2021 ◽  
Author(s):  
Mykhailo Pytko ◽  
Pavlo Kuchkovskyi ◽  
Ibrahim Abdellaitif ◽  
Ernesto Franco Delgado ◽  
Andriy Vyslobitsky ◽  
...  

Abstract This paper describes three coiled tubing (CT) applications in depleted reservoir wells, where full circulation and precise fluid placement were achievable only by using a novel solids-free loss-control system, such as abrasive perforating applications. It also describes the preparation work, such as laboratory results and mixing procedure performed to ensure successful implementation. The analysis of Ukrainian reservoir conditions by local and global engineering teams showed that in a highly depleted well, abrasive jetting through CT was the best option to efficiently perforate the wellbore. However, this approach could lead to later impairment of the gas production if the abrasive material (sand) could not be entirely recovered. Such a risk was even higher as wells were depleted and significant losses to the formation occurred. The use of solids-free fluid-loss material that was easy to mix, pump, and remove after the operation, was, therefore, critical to the success of that approach. In Ukraine, most of the brownfields have a reservoir pressure that varies between 50% and 20% of the original reservoir pressure. This is a challenge for CT operations in general and especially for abrasive jetting, which requires full circulation to remove solids. It also complicates intervention when precise fluid placement control is required, such as spotting cement to avoid its being lost into the formation. The perforation solids-free loss-control system is a highly crosslinked Hydroxy-Ethyl Cellulose (HEC) system designed for use after perforating when high-loss situations require a low-viscosity, nondamaging, bridging agent as is normally required in sand control applications. It is supplied as gel particles that are readily dispersed in most completion brines. The particles form a low-permeability filter cake that is pliable, conforms to the formation surface, and limits fluid loss. The system produces low friction pressures, which enable its placement using CT. Introduction of that system in Ukraine allowed the full circulation of sand or cuttings to surface without inducing significant damage to the formation for first time; it was also used for balanced cement plug placements. This project was the first application of the solids-free loss-control system in combination with CT operations. It previously was used only for loss control material during the well completion phase in sand formations with the use of drilling rigs.


2013 ◽  
Vol 706-708 ◽  
pp. 1063-1067
Author(s):  
Hai Feng Lin ◽  
Liu Qing Du ◽  
Li Ping Xiong

The Liquid Surface Pressure Control is the key factor for the guarantee of Low Pressure Die Casting Quality. Regarding to the disadvantages of conventional PID Control such as pressure fluctuation, poor repeatability of the pressure curve, and so on, we propose Liquid Surface Pressure Control System (LSPCS) based on Fuzzy Adaptive PID. Design method of Fuzzy PID Controller has been discussed, and the realization methods of the hardware and software in this system are developed. This proposed system has a good performance in practice.


2021 ◽  
Author(s):  
H. J. Miller ◽  
A. D. Richard

Abstract OBJECTIVE / SCOPE An injector has been developed that is able to continuously move conventional jointed tubing in and out of wells that may be underbalanced. It is an advantage to use the jointed tubing injector rather than coiled tubing or conventional hydraulic snubbing due to cost, speed of operation, transportation, effectiveness, and safety. The paper will describe the function and application of the jointed pipe injector. METHODS, PROCEDURES, PROCESS An injector has been designed with retractable gripping segments integral to the gripper blocks that are able to function on conventional jointed tubing, over interconnecting couplings and with the advantages of continuously operating injector movement. The description is to include how the geometry of the retractable gripper block system works and how the technical and safety risks of a conventional snubbing system or coiled tubing are overcome. Configurations whereby the jointed tubing injector can be used to provide methods of completing wells that are safer and more efficient than coiled tubing or a conventional hydraulic snubbing jack will be presented. RESULTS, OBSERVATIONS, CONCLUSIONS The biggest limitation of coiled tubing is due to its size and residual bend, it is not capable of reaching the end of the well before the wellbore friction causes helical buckling. The OD of the coiled tubing is limited by the available reel sizes and the difficulty transporting the large reels due to road dimensional and weight limitations. Coiled tubing is not able to be rotated at any time in the well. The use of jointed tubing eliminates those limitations. When a well is being completed with a conventional hydraulic snubbing jack, the length of the stroke that the jack can take is limited by the allowable unsupported length of the tubing to ensure that it will not buckle. It is also forced to stop workstring movement each time the jack is reset therefore the static friction of the workstring must be overcome during each movement of the jacks. The design of the jointed tubing injector minimizes the unsupported length of the tubing and allows the continuous movement of the tubing. The operation is less labor intensive, and the controls can be moved to a position that is less exposed to danger. NOVEL / ADDITIVE INFORMATION The Jointed Tubing Injector can continuously move jointed tubulars in and out of a well. There is no other piece of equipment that will address as many of the problems that have been experienced in the completion of extended reach wells. The paper will describe the injector and control system and how it can be applied to solve the challenges.


2021 ◽  
Author(s):  
Raymond Saragi ◽  
Mohammad Husien ◽  
Dalia Salim Abdullah ◽  
Ryan McLaughlin ◽  
Ian Patey ◽  
...  

Abstract A study was carried out to examine formation damage mechanisms caused by drilling fluids in tight reservoirs in several onshore oil fields in Abu Dhabi. Three phases of compatibility corefloods were carried out to identify potential to improve hydrocarbon recovery and examine reformulated/alternate drilling muds and treatment fluids. Interpretation was aided by novel Nano-CT quantifications and visualisations. The first phase examined the current drilling muds and showed inconsistent filtrate loss control alongside high levels of permeability alteration. These alterations were caused by retention of drilling mud constituents in the near-wellbore and incomplete clean-up of drilling mud-cakes. Based upon these results, reformulated and alternate drilling muds were examined in Phase 2, and there was a positive impact upon both filtrate loss and permeability, although the Nano-CT quantifications and visualisations showed that drilling mud constituents were still having an impact upon permeability. Candidate treatment fluids were examined in Phase 3, with all having a positive impact and the best performance coming from 15% HCl and an enzyme-based treatment. The interpretative tools showed that these treatments had removed drilling mud-cakes, created wormholes, and bypassed the areas where constituents were retained. The compatibility corefloods on tight reservoir core, alongside high-resolution quantifications and visualisations, therefore identified damaging mechanisms, helped identify potential to improve hydrocarbon recovery, and identify treatment fluid options which could be used in the fields.


Author(s):  
Simone Marchetti ◽  
Duccio Nappini ◽  
Roberto De Prosperis ◽  
Paolo Di Sisto

Abstract This paper describes the design of the Free Power Turbine (FPT) of the LM9000, in particularly the design of its Passive Clearance Control (PCC) system. The LM9000 is the aero-derivative version of the GE90-115B jet engine. Its core engine has many common parts with the GE90; what differs is the booster (low pressure compressor) and the lower pressure turbine (LPT). The booster of the LM9000 is without fan because the engine is not used to provide thrust but torque only, subsequently it has a new flow path [5]. The LPT has instead been replaced by an intermediate pressure turbine (IPT) and by the FPT. The IPT drives the booster, while the FPT is a free low-pressure turbine designed for both power generation and mechanical drive industrial applications, including LNG production plants. Due to its different application, the LM9000 FPT flow path differs sensibly from the GE90 LPT, however as the GE90 it is provided of a clearance control system that cools the casing in order to reduce its radial deflection. It is not the first time that a clearance control system has been used in industrial applications; in GE aero-derivative power turbines is already present in the LM6000 and LMS100. Design constraints, system complexity, high environment variability because the PCC is located outside the GT, harsh environments and long periods of usage still make the design of this component challenging. The design of the PCC has been supported by extensive heat transfer and mechanical simulations. Each PCC component has been addressed with a dedicated life calculation and all the blade and seal clearances have been estimated for all the operating conditions of the engine. Simulations have been validated by an extensive test campaign performed on the first engine.


2005 ◽  
Author(s):  
Tom Kavanagh ◽  
Randal Pruitt ◽  
Mike Reynolds ◽  
Richard Ortiz ◽  
Matt Shotenski ◽  
...  

Author(s):  
Patrick J. Schimoler ◽  
Jeffrey S. Vipperman ◽  
Laurel Kuxhaus ◽  
Angela M. Flamm ◽  
Daniel D. Budny ◽  
...  

The many muscles crossing the elbow joint allow for its motions to be created from different combinations of muscular activations. Muscles are strictly contractile elements and the joints they surround rely on varying loads from opposing antagonists for stability and movement. In designing a control system to actuate an elbow in a realistic manner, unidirectional, tendon-like actuation and muscle co-activation must be considered in order to successfully control the elbow’s two degrees of freedom. Also important is the multifunctionality of certain muscles, such as the biceps brachii, which create moments impacting both degrees of freedom: flexion / extension and pronation / supination. This paper seeks to develop and implement control algorithms on an elbow joint motion simulator that actuates cadaveric elbow specimens via four major muscles that cross the elbow joint. The algorithms were validated using an anatomically-realistic mechanical elbow. Clinically-meaningful results, such as the evaluation of radial head implants, can only be obtained under repeatable, realistic conditions; therefore, physiologic motions must be created by the application of appropriate loads. This is achieved by including load control on the muscles’ actuators as well as displacement control on both flexion / extension and supination / pronation.


Sign in / Sign up

Export Citation Format

Share Document