Advancement in Data Engineering and Feature Processing Workflow by Using Deep Learning Techniques for the Automation of ESP Failure Root Cause Analyses

2021 ◽  
Author(s):  
Saniya Karnik ◽  
Navya Yenuganti ◽  
Bonang Firmansyah Jusri ◽  
Supriya Gupta ◽  
Prasanna Nirgudkar ◽  
...  

Abstract Today, Electrical Submersible Pump (ESP) failure analysis is a tedious, human-intensive, and time-consuming activity involving dismantle, inspection, and failure analysis (DIFA) for each failure. This paper presents a novel artificial intelligence workflow using an ensemble of machine learning (ML) algorithms coupled with natural language processing (NLP) and deep learning (DL). The algorithms outlined in this paper bring together structured and unstructured data across equipment, production, operations, and failure reports to automate root cause identification and analysis post breakdown. This process will result in reduced turnaround time (TAT) and human effort thus drastically improving process efficiency.

2021 ◽  
Author(s):  
Saniya Karnik ◽  
Navya Yenuganti ◽  
Bonang Firmansyah Jusri ◽  
Supriya Gupta ◽  
Prasanna Nirgudkar ◽  
...  

Abstract Today, the Dismantle, Inspection, and Failure Analysis (DIFA) process for electrical submersible pump (ESP) failure analysis is a tedious, human-intensive, and time-consuming activity. The activity involves a set of data and various information formats from several activities in the ESP operation lifecycle. This paper proposes a novel artificial intelligence workflow to improve the efficiency of the DIFA process using an ensemble of machine learning (ML) algorithms. This ensemble of algorithms brings together structured/unstructured data across equipment, production, operations, and failure reports to automate root-cause identification and analysis post breakdown. As a result, the time and human effort required in the process has been reduced, and process efficiency has drastically improved.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Juncai Li ◽  
Xiaofei Jiang

Molecular property prediction is an essential task in drug discovery. Most computational approaches with deep learning techniques either focus on designing novel molecular representation or combining with some advanced models together. However, researchers pay fewer attention to the potential benefits in massive unlabeled molecular data (e.g., ZINC). This task becomes increasingly challenging owing to the limitation of the scale of labeled data. Motivated by the recent advancements of pretrained models in natural language processing, the drug molecule can be naturally viewed as language to some extent. In this paper, we investigate how to develop the pretrained model BERT to extract useful molecular substructure information for molecular property prediction. We present a novel end-to-end deep learning framework, named Mol-BERT, that combines an effective molecular representation with pretrained BERT model tailored for molecular property prediction. Specifically, a large-scale prediction BERT model is pretrained to generate the embedding of molecular substructures, by using four million unlabeled drug SMILES (i.e., ZINC 15 and ChEMBL 27). Then, the pretrained BERT model can be fine-tuned on various molecular property prediction tasks. To examine the performance of our proposed Mol-BERT, we conduct several experiments on 4 widely used molecular datasets. In comparison to the traditional and state-of-the-art baselines, the results illustrate that our proposed Mol-BERT can outperform the current sequence-based methods and achieve at least 2% improvement on ROC-AUC score on Tox21, SIDER, and ClinTox dataset.


2021 ◽  
Vol 9 (2) ◽  
pp. 1051-1052
Author(s):  
K. Kavitha, Et. al.

Sentiments is the term of opinion or views about any topic expressed by the people through a source of communication. Nowadays social media is an effective platform for people to communicate and it generates huge amount of unstructured details every day. It is essential for any business organization in the current era to process and analyse the sentiments by using machine learning and Natural Language Processing (NLP) strategies. Even though in recent times the deep learning strategies are becoming more familiar due to higher capabilities of performance. This paper represents an empirical study of an application of deep learning techniques in Sentiment Analysis (SA) for sarcastic messages and their increasing scope in real time. Taxonomy of the sentiment analysis in recent times and their key terms are also been highlighted in the manuscript. The survey concludes the recent datasets considered, their key contributions and the performance of deep learning model applied with its primary purpose like sarcasm detection in order to describe the efficiency of deep learning frameworks in the domain of sentimental analysis.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Kazi Nabiul Alam ◽  
Md Shakib Khan ◽  
Abdur Rab Dhruba ◽  
Mohammad Monirujjaman Khan ◽  
Jehad F. Al-Amri ◽  
...  

The COVID-19 pandemic has had a devastating effect on many people, creating severe anxiety, fear, and complicated feelings or emotions. After the initiation of vaccinations against coronavirus, people’s feelings have become more diverse and complex. Our aim is to understand and unravel their sentiments in this research using deep learning techniques. Social media is currently the best way to express feelings and emotions, and with the help of Twitter, one can have a better idea of what is trending and going on in people’s minds. Our motivation for this research was to understand the diverse sentiments of people regarding the vaccination process. In this research, the timeline of the collected tweets was from December 21 to July21. The tweets contained information about the most common vaccines available recently from across the world. The sentiments of people regarding vaccines of all sorts were assessed using the natural language processing (NLP) tool, Valence Aware Dictionary for sEntiment Reasoner (VADER). Initializing the polarities of the obtained sentiments into three groups (positive, negative, and neutral) helped us visualize the overall scenario; our findings included 33.96% positive, 17.55% negative, and 48.49% neutral responses. In addition, we included our analysis of the timeline of the tweets in this research, as sentiments fluctuated over time. A recurrent neural network- (RNN-) oriented architecture, including long short-term memory (LSTM) and bidirectional LSTM (Bi-LSTM), was used to assess the performance of the predictive models, with LSTM achieving an accuracy of 90.59% and Bi-LSTM achieving 90.83%. Other performance metrics such as precision,, F1-score, and a confusion matrix were also used to validate our models and findings more effectively. This study improves understanding of the public’s opinion on COVID-19 vaccines and supports the aim of eradicating coronavirus from the world.


Author(s):  
Yilin Yan ◽  
Jonathan Chen ◽  
Mei-Ling Shyu

Stance detection is an important research direction which attempts to automatically determine the attitude (positive, negative, or neutral) of the author of text (such as tweets), towards a target. Nowadays, a number of frameworks have been proposed using deep learning techniques that show promising results in application domains such as automatic speech recognition and computer vision, as well as natural language processing (NLP). This article shows a novel deep learning-based fast stance detection framework in bipolar affinities on Twitter. It is noted that millions of tweets regarding Clinton and Trump were produced per day on Twitter during the 2016 United States presidential election campaign, and thus it is used as a test use case because of its significant and unique counter-factual properties. In addition, stance detection can be utilized to imply the political tendency of the general public. Experimental results show that the proposed framework achieves high accuracy results when compared to several existing stance detection methods.


2021 ◽  
Author(s):  
KOUSHIK DEB

Character Computing consists of not only personality trait recognition, but also correlation among these traits. Tons of research has been conducted in this area. Various factors like demographics, sentiment, gender, LIWC, and others have been taken into account in order to understand human personality. In this paper, we have concentrated on the factors that could be obtained from available data using Natural Language Processing. It has been observed that the most successful personality trait prediction models are highly dependent on NLP techniques. Researchers across the globe have used different kinds of machine learning and deep learning techniques to automate this process. Different combinations of factors lead the research in different directions. We have presented a comparative study among those experiments and tried to derive a direction for future development.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Tianlong Gu ◽  
Hongliang Chen ◽  
Chenzhong Bin ◽  
Liang Chang ◽  
Wei Chen

Deep learning systems have been phenomenally successful in the fields of computer vision, speech recognition, and natural language processing. Recently, researchers have adopted deep learning techniques to tackle collaborative filtering with implicit feedback. However, the existing methods generally profile both users and items directly, while neglecting the similarities between users’ and items’ neighborhoods. To this end, we propose the neighborhood attentional memory networks (NAMN), a deep learning recommendation model applying two dedicated memory networks to capture users’ neighborhood relations and items’ neighborhood relations respectively. Specifically, we first design the user neighborhood component and the item neighborhood component based on memory networks and attention mechanisms. Then, by the associative addressing scheme with the user and item memories in the neighborhood components, we capture the complex user-item neighborhood relations. Stacking multiple memory modules together yields deeper architectures exploring higher-order complex user-item neighborhood relations. Finally, the output module jointly exploits the user and item neighborhood information with the user and item memories to obtain the ranking score. Extensive experiments on three real-world datasets demonstrate significant improvements of the proposed NAMN method over the state-of-the-art methods.


2019 ◽  
Vol 14 (4) ◽  
pp. 450-469 ◽  
Author(s):  
Jiechao Ma ◽  
Yang Song ◽  
Xi Tian ◽  
Yiting Hua ◽  
Rongguo Zhang ◽  
...  

AbstractAs a promising method in artificial intelligence, deep learning has been proven successful in several domains ranging from acoustics and images to natural language processing. With medical imaging becoming an important part of disease screening and diagnosis, deep learning-based approaches have emerged as powerful techniques in medical image areas. In this process, feature representations are learned directly and automatically from data, leading to remarkable breakthroughs in the medical field. Deep learning has been widely applied in medical imaging for improved image analysis. This paper reviews the major deep learning techniques in this time of rapid evolution and summarizes some of its key contributions and state-of-the-art outcomes. The topics include classification, detection, and segmentation tasks on medical image analysis with respect to pulmonary medical images, datasets, and benchmarks. A comprehensive overview of these methods implemented on various lung diseases consisting of pulmonary nodule diseases, pulmonary embolism, pneumonia, and interstitial lung disease is also provided. Lastly, the application of deep learning techniques to the medical image and an analysis of their future challenges and potential directions are discussed.


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1995
Author(s):  
Radu Cristian Alexandru Iacob ◽  
Vlad Cristian Monea ◽  
Dan Rădulescu ◽  
Andrei-Florin Ceapă ◽  
Traian Rebedea ◽  
...  

While semantic parsing has been an important problem in natural language processing for decades, recent years have seen a wide interest in automatic generation of code from text. We propose an alternative problem to code generation: labelling the algorithmic solution for programming challenges. While this may seem an easier task, we highlight that current deep learning techniques are still far from offering a reliable solution. The contributions of the paper are twofold. First, we propose a large multi-modal dataset of text and code pairs consisting of algorithmic challenges and their solutions, called AlgoLabel. Second, we show that vanilla deep learning solutions need to be greatly improved to solve this task and we propose a dual text-code neural model for detecting the algorithmic solution type for a programming challenge. While the proposed text-code model increases the performance of using the text or code alone, the improvement is rather small highlighting that we require better methods to combine text and code features.


Sign in / Sign up

Export Citation Format

Share Document