Evaluate Wettability and Production Potential of Tight Reservoirs Through Spontaneous Imbibition Using Time-Lapse NMR and Other Measurements

2021 ◽  
Author(s):  
Mansoor Ali ◽  
Safdar Ali ◽  
Ashish Mathur ◽  
William Von Gonten

Abstract Several studies have shown that rock-fluid interactions in tight rocks are influenced by the natural wettability behavior of the various pore systems. Studying the water/oil displacement on a smaller scale using core plug imbibition and monitoring with NMR is very insightful in evaluating wettability and distinguishing pore modes and rock types based on their fluid affinity. Extending learnings from plug-scale imbibition process to reservoir production behavior requires understanding of the underlying compositional and/or textural parameters controlling the wettability. This paper presents a systematic study of spontaneous imbibition of oil and water in core plugs procured from several tight and organic-rich reservoirs with varying mineral composition and organic content. The experiment comprised three identical core plugs from the same depth undergoing multiple fluid imbibition cycles with one plug starting in produced brine, the second one in produced crude and the last one in decane. Sample weights were continuously monitored and when stable, a sample which was in brine was moved to crude and the one in crude was moved to brine. This process was repeated for four cycles so that samples that started in brine finally ended up in crude and those that started in crude ended up in brine. The saturation changes and rock-fluid interaction in different fluid types were monitored using a 12 MHz NMR spectrometer. The 12 MHz NMR allowed very accurate partitioning of the oil-filled and water-filled porosity in these tight rocks, which was essential for the wettability analysis. The rate and extent of saturation changes varied significantly from sample to sample. The comparison between the companion plugs imbibing either higher amounts of oil or water revealed the fluid affinity of each sample. We computed the ratio of the net incremental fluid fraction to the total porosity to represent the dominant pore wetting system for rock samples at a given depth. We measured organic content and mineralogy of the samples and analyzed the matrix effect on wettability. We analyzed the post-imbibition NMR relaxation times (T1,T2) of individual fluid types and integrated with matrix properties to evaluate oil and water mobilities. We found predicted fluid mobilities to be consistent with the observed production from wells drilled in the different reservoirs and rock types. We observed most samples attain 100% fluid saturation within two to four cycles and almost all the samples at a given depth took up very similar water volumes irrespective of whether the companion plugs started in brine or crude. The process highlighted that water-wet pores governed the final water saturation, which was strongly correlated with total clay. The amount of organic content and carbonate minerals influenced the oil uptake and its relative mobility. For samples that started in decane, decane was imbibed faster and caused samples to attain higher oil saturation than samples that started in crude.

2020 ◽  
Vol 21 (1) ◽  
pp. 53-59
Author(s):  
Sarah S. Zughar ◽  
Ahmad A. Ramadhan ◽  
Ahmed K. Jaber

This research was aimed to determine the petrophysical properties (porosity, permeability and fluid saturation) of a reservoir. Petrophysical properties of the Shuiaba Formation at Y field are determined from the interpretation of open hole log data of six wells. Depending on these properties, it is possible to divide the Shuiaba Formation which has thickness of a proximately 180-195m, into three lithological units: A is upper unit (thickness about 8 to 15 m) involving of moderately dolomitized limestones; B is a middle unit (thickness about 52 to 56 m) which is composed of dolomitic limestone, and C is lower unit ( >110 m thick) which consists of shale-rich and dolomitic limestones. The results showed that the average formation water resistivity for the formation (Rw = 0.021), the average resistivity of the mud filtration (Rmf = 0.57), and the Archie parameters determined by the picket plot method, where m value equal to 1.94, n value equal to 2 and a value equal to 1. Porosity values and water saturation Sw were calculated along with the depth of the composition using IP V3.5 software. The interpretation of the computer process (CPI) showed that the better porous zone holds the highest amount of hydrocarbons in the second zone. From the flow zone indicator method, there are four rock types in the studied reservoir.


2017 ◽  
Vol 54 (3) ◽  
pp. 181-201
Author(s):  
Rebecca Johnson ◽  
Mark Longman ◽  
Brian Ruskin

The Three Forks Formation, which is about 230 ft thick along the southern Nesson Anticline (McKenzie County, ND), has four “benches” with distinct petrographic and petrophysical characteristics that impact reservoir quality. These relatively clean benches are separated by slightly more illitic (higher gamma-ray) intervals that range in thickness from 10 to 20 ft. Here we compare pore sizes observed in scanning electron microscope (SEM) images of the benches to the total porosity calculated from binned precession decay times from a suite of 13 nuclear magnetic resonance (NMR) logs in the study area as well as the logarithmic mean of the relaxation decay time (T2 Log Mean) from these NMR logs. The results show that the NMR log is a valid tool for quantifying pore sizes and pore size distributions in the Three Forks Formation and that the T2 Log Mean can be correlated to a range of pore sizes within each bench of the Three Forks Formation. The first (shallowest) bench of the Three Forks is about 35 ft thick and consists of tan to green silty and shaly laminated dolomite mudstones. It has good reservoir characteristics in part because it was affected by organic acids and received the highest oil charge from the overlying lower Bakken black shale source rocks. The 13 NMR logs from the study area show that it has an average of 7.5% total porosity (compared to 8% measured core porosity), and ranges from 5% to 10%. SEM study shows that both intercrystalline pores and secondary moldic pores formed by selective partial dissolution of some grains are present. The intercrystalline pores are typically triangular and occur between euhedral dolomite rhombs that range in size from 10 to 20 microns. The dolomite crystals have distinct iron-rich (ferroan) rims. Many of the intercrystalline pores are partly filled with fibrous authigenic illite, but overall pore size typically ranges from 1 to 5 microns. As expected, the first bench has the highest oil saturations in the Three Forks Formation, averaging 50% with a range from 30% to 70%. The second bench is also about 35 ft thick and consists of silty and shaly dolomite mudstones and rip-up clast breccias with euhedral dolomite crystals that range in size from 10 to 25 microns. Its color is quite variable, ranging from green to tan to red. The reservoir quality of the second bench data set appears to change based on proximity to the Nesson anticline. In the wells off the southeast flank of the Nesson anticline, the water saturation averages 75%, ranging from 64% to 91%. On the crest of the Nesson anticline, the water saturation averages 55%, ranging from 40% to 70%. NMR porosity is consistent across the entire area of interest - averaging 7.3% and ranging from 5% to 9%. Porosity observed from samples collected on the southeast flank of the Nesson Anticline is mainly as intercrystalline pores that have been extensively filled with chlorite clay platelets. In the water saturated southeastern Nesson Anticline, this bench contains few or no secondary pores and the iron-rich rims on the dolomite crystals are less developed than those in the first bench. The chlorite platelets in the intercrystalline pores reduce average pore size to 500 to 800 nanometers. The third bench is about 55 ft thick and is the most calcareous of the Three Forks benches with 20 to 40% calcite and a proportionate reduction in dolomite content near its top. It is also quite silty and shaly with a distinct reddish color. Its dolomite crystals are 20 to 50 microns in size and partly abraded and dissolved. Ferroan dolomite rims are absent. This interval averages 7.1% porosity and ranges from 5% to 9%, but the pores average just 200 nanometers in size and occur mainly as microinterparticle pores between illite flakes in intracrystalline pores in the dolomite crystals. This interval has little or no oil saturation on the southern Nesson Anticline. Unlike other porosity tools, the NMR tool is a lithology independent measurement. The alignment of hydrogen nuclei to the applied magnetic field and the subsequent return to incoherence are described by two decay time constants, longitudinal relaxation time (T1) and transverse relaxation time (T2). T2 is essentially the rate at which hydrogen nuclei lose alignment to the external magnetic field. The logarithmic mean of T2 (T2 Log Mean) has been correlated to pore-size distribution. In this study, we show that the assumption that T2 Log Mean can be used as a proxy for pore-size distribution changes is valid in the Three Forks Formation. While the NMR total porosity from T2 remains relatively consistent in the three benches of the Three Forks, there are significant changes in the T2 Log Mean from bench to bench. There is a positive correlation between changes in T2 Log Mean and average pore size measured on SEM samples. Study of a “type” well, QEP’s Ernie 7-2-11 BHD (Sec. 11, T149N, R95W, McKenzie County), shows that the 1- to 5-micron pores in the first bench have a T2 Log Mean relaxation time of 10.2 msec, whereas the 500- to 800-nanometer pores in the chlorite-filled intercrystalline pores in the second bench have a T2 Log Mean of 4.96 msec. This compares with a T2 Log Mean of 2.86 msec in 3rd bench where pores average just 200 nanometers in size. These data suggest that the NMR log is a useful tool for quantifying average pore size in the various benches of the Three Forks Formation.


Stroke ◽  
1986 ◽  
Vol 17 (6) ◽  
pp. 1149-1152 ◽  
Author(s):  
Y Horikawa ◽  
S Naruse ◽  
C Tanaka ◽  
K Hirakawa ◽  
H Nishikawa

2001 ◽  
Vol 19 (3-4) ◽  
pp. 509-512 ◽  
Author(s):  
L. Appolonia ◽  
G.C. Borgia ◽  
V. Bortolotti ◽  
R.J.S. Brown ◽  
P. Fantazzini ◽  
...  

1984 ◽  
Vol 2 (3) ◽  
pp. 250-251 ◽  
Author(s):  
L.K. Misra ◽  
P.A. Narayana ◽  
D. Bearden ◽  
T. Egan ◽  
R.P. Munjaal ◽  
...  

2022 ◽  
Author(s):  
Omar Alfarisi ◽  
Djamel Ouzzane ◽  
Mohamed Sassi ◽  
TieJun Zhang

<p><a></a>Each grid block in a 3D geological model requires a rock type that represents all physical and chemical properties of that block. The properties that classify rock types are lithology, permeability, and capillary pressure. Scientists and engineers determined these properties using conventional laboratory measurements, which embedded destructive methods to the sample or altered some of its properties (i.e., wettability, permeability, and porosity) because the measurements process includes sample crushing, fluid flow, or fluid saturation. Lately, Digital Rock Physics (DRT) has emerged to quantify these properties from micro-Computerized Tomography (uCT) and Magnetic Resonance Imaging (MRI) images. However, the literature did not attempt rock typing in a wholly digital context. We propose performing Digital Rock Typing (DRT) by: (1) integrating the latest DRP advances in a novel process that honors digital rock properties determination, while; (2) digitalizing the latest rock typing approaches in carbonate, and (3) introducing a novel carbonate rock typing process that utilizes computer vision capabilities to provide more insight about the heterogeneous carbonate rock texture.<br></p>


2021 ◽  
Vol 37 (2) ◽  
pp. 219-231
Author(s):  
Jean Frederic Isingizwe Nturambirwe ◽  
Willem Jacobus Perold ◽  
Umezuruike Linus Opara

HighlightsMeasurements of relaxation times in intact banana at micro-Tesla field was achieved.Bulk spin-spin relaxation time highly correlated with best descriptors of banana ripening.A basis for quasi-continuous distribution of spin-spin relaxation in banana was given.Abstract. Achieving fast, low-cost, and non-destructive internal quality testing techniques in the horticultural industry is a challenge. Developing techniques such as ultra-low field nuclear magnetic resonance (NMR) is a promising solution. Banana is a fast ripening fruit, which undergoes many changes in quality characteristics during ripening, and was chosen as a fit choice for extensive fruit quality study by NMR. A commercial NMR system using a superconducting quantum interference device (SQUID) as a sensor and operating at 100µT was used to measure changes that occurred in banana fruit during ripening. The longitudinal and transverse relaxation times (T1 and T2, respectively), were measured on fruit samples progressively drawn from a larger batch under storage. Physico-chemical attributes such as total soluble solids (TSS), titratable acidity (TA), pH, and color parameters were measured and used as reference measurements. Statistical analysis using cross-correlation, linear regression, analysis of variance (ANOVA), and principal components analysis (PCA) were performed to probe the relationships between various quality attributes. T1 showed high correlations with total soluble solids (R = 0.84), sugar:acid ratio (R = 0.84) and color parameters (R from 0.49 to 0.88). T2, on the other hand, was most highly correlated to pH (R = 0.76) but also had a statistically significant but negative correlation with Ri (-0.58 at p &lt;0.05). PCA results separated the first day from the remaining days of the ripening process and the overall variation was mostly explained by color attributes (a* and h), T1, TSS, and TSS/TA. During seven days of ripening in storage, the trend of change in the peel color of banana was best described by L*, a*, h and total color difference (TCD). The index of ripening, Ri, defined based on the apparent change in peel color was highly correlated to TSS, TSS/TA, L*, a*, h, TCD, and T1. The strong similarity between the evolution of T1 and the most commonly approved characteristics of banana ripening suggest that T1 has great potential for characterizing the ripening process of banana. However, an investigation of the full metabolic profile of banana during ripening would provide an understanding of the link between NMR relaxation and ripening characteristics. A distribution of T1 relaxation time of intact banana fruit at the micro-Tesla field was successfully generated using Laplace inversion. A suitable framework of T1-domain based studies on banana ripening also applicable to other fruit was discussed; it would provide a comprehensive understanding of structural changes and water mobility that occur in ripening banana. The SQUID-detected ultra-low field NMR used here shows promise as a tool for probing the quality of intact banana fruit. Keywords: Banana quality, Laplace inversion, Relaxometry, SQUID-NMR.


Sign in / Sign up

Export Citation Format

Share Document