Novel Sand Conglomeration Treatment Prevents Sand Production and Enhances Well Productivity: Offshore Caspian Case Study

2021 ◽  
Author(s):  
Ruslan Kalabayev ◽  
Ekaterina Sukhova ◽  
Gadam Rovshenov ◽  
Guvanch Gurbanov ◽  
Joel Gil ◽  
...  

Abstract Many oil producing wells, globally, experience sand production problems when reservoir rock consists of unconsolidated sand. Several wells in the Dzheitune oil field are experiencing a similar challenge. Production of formation fines and sand has caused accumulation of fill and wellbore equipment failures and has necessitated periodical and costly coiled tubing-assisted wellbore cleanout operations. A novel chemical treatment tested in the oil field to tackle the challenge led to positive results. A well with a relatively short target perforation interval was selected as a candidate for the trial sand conglomeration treatment to avoid any uncertainties related to zone coverage. Pre-requisite sand agglomeration and chemical-crude oil compatibility laboratory studies were carried out to optimize the main system and preflush fluid formulations. Once the laboratory testing was complete, a step-rate test was performed to determine the maximum injection rate below formation fracturing pressure. The chemical systems were prepared using standard blending equipment. The preflush fluid was injected to prepare the treated zone. The main fluid was then injected into the reservoir in several cycles at matrix rate by a bullheading process. Upon completion of the treatment, the well was shut in for several days for optimal agglomeration (conglomeration) before the well was slowly put on production. A long-term increase in the productivity index and sand-free flow rate with no damage to the wellbore or the reservoir were observed. The technology demonstrated its efficiency in preventing and controlling sand production; avoiding frequent, time-consuming, costly wellbore cleanout operations; and producing hydrocarbons at reduced drawdown pressure.

2013 ◽  
Vol 734-737 ◽  
pp. 1294-1298
Author(s):  
Xiang Liu ◽  
Chun Zhao ◽  
Zhi Chao Qiu

Formation porosity near the wellbore can be changed by massive sand production, so it is impractical to use the initial formation porosity in downhole operation design in unconsolidated sand reservoir. The numerical method for sand prediction is limited for its complicated calculation procedures. An analytical model for porosity variation calculation is developed by coupling the material balance equation with the critical fluid drag force. With the result of sand production simulated test, the model can quantify the relation between sand production rate and formation porosity variation. Application of the model in oil field shows that it is simple and practicable for field engineering design.


2007 ◽  
Vol 10 (02) ◽  
pp. 112-121 ◽  
Author(s):  
Enzo Beretta ◽  
Alessandro Tiani ◽  
Gaetano Lo Presti ◽  
Francesca Verga

Summary Environmental constraints and high costs, especially offshore, are making conventional-well testing less and less feasible and accepted by the public administration. New options were thoroughly evaluated to find a viable alternative to standard production tests for characterizing the well productivity without surface production. An accurate investigation demonstrated that injection tests could provide all the information needed to calculate the well productivity at reasonably low costs and with a good degree of reliability. On the basis of the results of laboratory and field pilot tests, it was proved that injectivity tests could be applied successfully to a real sour-oil field. Laboratory tests proved that brine could be a suitable injection fluid because there were no compatibility problems with the oil and the reservoir rock. It was verified that the interpretation of the pressure transients should be referred to the falloff period rather than to the injection phase. The formation permeability-thickness product (kh) could be identified correctly from the pressure-derivative analysis only if multiphase flow was assumed. The total skin value could also be obtained from the test interpretation. The total skin comprises two components: a mechanical component resulting from permeability damage and a biphase component resulting from fluid interaction in the reservoir. Except for a limited number of cases, the biphase skin can be evaluated only with numerical well testing, provided that the fluid relative permeability curves are available. It was also demonstrated that the biphase component depends mainly on the injection rate but is independent of the formation permeability. Then, the well-known transient equation was applied to determine the well productivity index (PI) based on the kh and the mechanical skin. PI values calculated from injection tests compared satisfactorily with PI values measured from six drillstem tests (DSTs) performed on appraisal wells. Introduction In the vast majority of situations associated with exploration activities, there is no infrastructure and no equipment in place to collect the hydrocarbons produced during well tests; thus, it is common practice to burn the produced fluids. However, the demands (if not requirements) to reduce or avoid hydrocarbon emissions and the restrictive environmental regulations in place make conventional well testing less and less feasible for appraisal wells (Levitan 2002; Hollaender et al. 2002). In addition, the general target of reducing the time and cost of operations, especially for challenging oilfield developments, requires evaluating whether conventional well testing is always the optimal cost-effective option. Therefore, the potential value of alternatives that might be used as a substitute to conventional well testing needs to be investigated. It is likely that individually, these alternatives do not fulfill all the targets of conventional tests; thus, a clear understanding of the capabilities of each is necessary. The work presented in this paper refers to a real, naturally fractured reservoir with more than 200 development wells to be tested after final completion. Standard production tests are not allowed by local regulations because of the environmental concerns and the risks associated with the presence of high percentages of H2S. Possible alternatives to conventional well testing were investigated, with the principal goal being the estimation of the productivity of the field's main geological units (Pool 1, Pool 2, and Pool 3).


2017 ◽  
pp. 63-67
Author(s):  
L. A. Vaganov ◽  
A. Yu. Sencov ◽  
A. A. Ankudinov ◽  
N. S. Polyakova

The article presents a description of the settlement method of necessary injection rates calculation, which is depended on the injected water migration into the surrounding wells and their mutual location. On the basis of the settlement method the targeted program of geological and technical measures for regulating the work of the injection well stock was created and implemented by the example of the BV7 formation of the Uzhno-Vyintoiskoe oil field.


1965 ◽  
Vol 5 (04) ◽  
pp. 329-332 ◽  
Author(s):  
Larman J. Heath

Abstract Synthetic rock with predictable porosity and permeability bas been prepared from mixtures of sand, cement and water. Three series of mixes were investigated primarily for the relation between porosity and permeability for certain grain sizes and proportions. Synthetic rock prepared of 65 per cent large grains, 27 per cent small grains and 8 per cent Portland cement, gave measurable results ranging in porosity from 22.5 to 40 per cent and in permeability from 0.1 darcies to 6 darcies. This variation in porosity and permeability was caused by varying the amount of blending water. Drainage- cycle relative permeability characteristics of the synthetic rock were similar to those of natural reservoir rock. Introduction The fundamental behavior characteristics of fluids flowing through porous media have been described in the literature. Practical application of these flow characteristics to field conditions is too complicated except where assumptions are overly simplified. The use of dimensionally scaled models to simulate oil reservoirs has been described in the literature. These and other papers have presented the theoretical and experimental justification for model design. Others have presented elements of model construction and their operation. In most investigations the porous media have consisted of either unconsolidated sand, glass beads, broken glass or plastic-impregnated granular substances-materials in which the flow behavior is not identical to that in natural reservoir rock. The relative permeability curves for unconsolidated sands differ from those for consolidated sandstone. The effect of saturation history on relative permeability measurements A discussed by Geffen, et al. Wygal has shown quite conclusively that a process of artificial cementation can be used to render unconsolidated packs into synthetic sandstones having properties similar to those of natural rock. Many theoretical and experimental studies have been made in attempts to determine the structure and properties of unconsolidated sand, the most notable being by Naar and Wygal. Others have theorized and experimented with the fundamental characteristics of reservoir rocks. This study was conducted to determine if some general relationship could be established between the size of sand grains and the porosity and permeability in consolidated binary packs. This paper presents the results obtained by changing some of the factors which affect the porosity and permeability of synthetically prepared sandstone. In addition, drainage relative permeability curves are presented. EXPERIMENTAL PROCEDURE Mixtures of Portland cement with water and aggregate generally are designed to have certain characteristics, but essentially all are planned to be impervious to water or other liquids. Synthetic sandstone simulating oil reservoir rock, however, must be designed to have a given permeability (sometimes several darcies), a porosity which is primarily the effective porosity but quantitatively similar to natural rock, and other characteristics comparable to reservoir rock, such as wettability, pore geometry, tortuosity, etc. Unconsolidated ternary mixtures of spheres gave both a theoretically computed and an experimentally observed minimum porosity of about 25 per cent. By using a particle-distribution system, one-size particle packs had reproducible porosities in the reproducible range of 35 to 37 per cent. For model reservoir studies of the prototype system, a synthetic rock having a porosity of 25 per cent or less and a permeability of 2 darcies was required. The rock bad to be uniform and competent enough to handle. Synthetic sandstone cores mere prepared utilizing the technique developed by Wygal. Some tight variations in the procedure were incorporated. The sand was sieved through U.S. Standard sieves. SPEJ P. 329ˆ


2013 ◽  
Vol 701 ◽  
pp. 440-444
Author(s):  
Gang Liu ◽  
Peng Tao Liu ◽  
Bao Sheng He

Sand production is a serious problem during the exploitation of oil wells, and people put forward the concept of limited sand to alleviate this problem. Oil production with limited sanding is an efficient mod of production. In order to complete limited sand exploitation, improve the productivity of oil wells, a real-time sand monitoring system is needed to monitor the status of wells production. Besides acoustic sand monitoring and erosion-based sand monitoring, a vibration-based sand monitoring system with two installing styles is proposed recently. The paper points out the relationships between sand monitoring signals collected under intrusive and non-intrusive installing styles and sanding parameters, which lays a good foundation for further study and actual sand monitoring in oil field.


2021 ◽  
Author(s):  
A. S. Ramadhan

In the Jambi oil field, sand production can create unattainable production targets and short-lived well lifetime. One function of the Jambi Engineering and Planning Field is to look for solutions to these problems, such as the installation of progressive cavity pumps (PCP) into wells. Although successful, a problem that often arises in PCP wells is sand settling when the PCP is off, for example during electric trips, engine maintenance and repair of flowlines. This settling can lead to a stuck PCP. A recent solution has been to install a Pressure Actuated Relief (PAR) valve, where the tool directs sand deposits out of the tubing to the annulus so that it does not enter the pump. Installation of this tool has increased the average lifetime of sandy wells from 2 months to 6 months, and has increased oil production in these wells by up to 47%.This paper will discuss the successful installation of a PAR Valve into well KTT-08 in the Jambi Field.


2021 ◽  
Author(s):  
Mohammed Ahmed Al-Janabi ◽  
Omar F. Al-Fatlawi ◽  
Dhifaf J. Sadiq ◽  
Haider Abdulmuhsin Mahmood ◽  
Mustafa Alaulddin Al-Juboori

Abstract Artificial lift techniques are a highly effective solution to aid the deterioration of the production especially for mature oil fields, gas lift is one of the oldest and most applied artificial lift methods especially for large oil fields, the gas that is required for injection is quite scarce and expensive resource, optimally allocating the injection rate in each well is a high importance task and not easily applicable. Conventional methods faced some major problems in solving this problem in a network with large number of wells, multi-constrains, multi-objectives, and limited amount of gas. This paper focuses on utilizing the Genetic Algorithm (GA) as a gas lift optimization algorithm to tackle the challenging task of optimally allocating the gas lift injection rate through numerical modeling and simulation studies to maximize the oil production of a Middle Eastern oil field with 20 production wells with limited amount of gas to be injected. The key objective of this study is to assess the performance of the wells of the field after applying gas lift as an artificial lift method and applying the genetic algorithm as an optimization algorithm while comparing the results of the network to the case of artificially lifted wells by utilizing ESP pumps to the network and to have a more accurate view on the practicability of applying the gas lift optimization technique. The comparison is based on different measures and sensitivity studies, reservoir pressure, and water cut sensitivity analysis are applied to allow the assessment of the performance of the wells in the network throughout the life of the field. To have a full and insight view an economic study and comparison was applied in this study to estimate the benefits of applying the gas lift method and the GA optimization technique while comparing the results to the case of the ESP pumps and the case of naturally flowing wells. The gas lift technique proved to have the ability to enhance the production of the oil field and the optimization process showed quite an enhancement in the task of maximizing the oil production rate while using the same amount of gas to be injected in the each well, the sensitivity analysis showed that the gas lift method is comparable to the other artificial lift method and it have an upper hand in handling the reservoir pressure reduction, and economically CAPEX of the gas lift were calculated to be able to assess the time to reach a profitable income by comparing the results of OPEX of gas lift the technique showed a profitable income higher than the cases of naturally flowing wells and the ESP pumps lifted wells. Additionally, the paper illustrated the genetic algorithm (GA) optimization model in a way that allowed it to be followed as a guide for the task of optimizing the gas injection rate for a network with a large number of wells and limited amount of gas to be injected.


2021 ◽  
pp. 1-13
Author(s):  
Wang Xiaoyan ◽  
Zhao Jian ◽  
Yin Qingguo ◽  
Cao Bao ◽  
Zhang Yang ◽  
...  

Summary Achieving effective results using conventional thermal recovery technology is challenging in the deep undisturbed reservoir with extra-heavy oil in the LKQ oil field. Therefore, in this study, a novel approach based on in-situ combustion huff-and-puff technology is proposed. Through physical and numerical simulations of the reservoir, the oil recovery mechanism and key injection and production parameters of early-stage ultraheavy oil were investigated, and a series of key engineering supporting technologies were developed that were confirmed to be feasible via a pilot test. The results revealed that the ultraheavy oil in the LKQ oil field could achieve oxidation combustion under a high ignition temperature of greater than 450°C, where in-situ cracking and upgrading could occur, leading to greatly decreased viscosity of ultraheavy oil and significantly improved mobility. Moreover, it could achieve higher extra-heavy-oil production combined with the energy supplement of flue gas injection. The reasonable cycles of in-situ combustion huff and puff were five cycles, with the first cycle of gas injection of 300 000 m3 and the gas injection volume per cycle increasing in turn. It was predicted that the incremental oil production of a single well would be 500 t in one cycle. In addition, the supporting technologies were developed, such as a coiled-tubing electric ignition system, an integrated temperature and pressure monitoring system in coiled tubing, anticorrosion cementing and completion technology with high-temperature and high-pressure thermal recovery, and anticorrosion injection-production integrated lifting technology. The proposed method was applied to a pilot test in the YS3 well in the LKQ oil field. The high-pressure ignition was achieved in the 2200-m-deep well using the coiled-tubing electric igniter. The maximum temperature tolerance of the integrated monitoring system in coiled tubing reached up to 1200°C, which provided the functions of distributed temperature and multipoint pressure measurement in the entire wellbore. The combination of 13Cr-P110 casing and titanium alloy tubing effectively reduced the high-temperature and high-pressure oxygen corrosion of the wellbore. The successful field test of the comprehensive supporting engineering technologies presents a new approach for effective production in deep extra-heavy-oil reservoirs.


Sign in / Sign up

Export Citation Format

Share Document