New Generation of Ultra-High Definition Directional Propagation Resistivity for Real Time Reservoir Characterization and Geosteering-While-Drilling

2021 ◽  
Author(s):  
Keli Sun ◽  
Michael Thiel ◽  
Ettore Mirto ◽  
Sarwa Tan ◽  
Jianguo Liu ◽  
...  

Abstract Over the last two decades, the continuing integration of distance-to-boundary logging while drilling (LWD) workflows with the directional drilling processes, has dramatically improved geosteering of deviated and horizontal wells. However, the interpretation of underlying propagation azimuthal electromagnetic measurements has remained challenging in complex thin and multi-layered geologies. Recent technology advancements in LWD electromagnetic propagation resistivity coupled with significant software enhancements provide an opportunity for improving the formation evaluation to reduce wellbore position uncertainty, accurately detecting physical parameters such as layer resistivity and anisotropy, formation dip and azimuth. A newly developed multilayer mapping-while-drilling service with full azimuthal sensitivity is introduced for use in geosteering and formation evaluation while drilling applications. The tool offers the industry's first combination of axial, tilted and transverse antennas to produce a complete measurement set to enable the interpretation of complex and anisotropic formation. Advanced application algorithms are used to calculate a high-definition map of the formation providing horizontal and vertical resistivity (anisotropy), as well as dipping angle and azimuth. Furthermore, the tool can provide deep resistivity borehole images while drilling in real time. The new measurement set, more comprehensive than any other directional propagation resistivity tool in the industry, is discussed in detail. The measurements, combined with a new deterministic inversion, enable reconstruction of the resistivity of up to eight formation layers, and significantly outperforms existing directional propagation resistivity services. The new measurements and data processing workflow are demonstrated with several synthetic and field data. Examples show that this newly developed tool can provide a reliable two-in-one service: geosteering and advanced formation evaluation.

2019 ◽  
Vol 4 (2) ◽  
pp. 356-362
Author(s):  
Jennifer W. Means ◽  
Casey McCaffrey

Purpose The use of real-time recording technology for clinical instruction allows student clinicians to more easily collect data, self-reflect, and move toward independence as supervisors continue to provide continuation of supportive methods. This article discusses how the use of high-definition real-time recording, Bluetooth technology, and embedded annotation may enhance the supervisory process. It also reports results of graduate students' perception of the benefits and satisfaction with the types of technology used. Method Survey data were collected from graduate students about their use and perceived benefits of advanced technology to support supervision during their 1st clinical experience. Results Survey results indicate that students found the use of their video recordings useful for self-evaluation, data collection, and therapy preparation. The students also perceived an increase in self-confidence through the use of the Bluetooth headsets as their supervisors could provide guidance and encouragement without interrupting the flow of their therapy sessions by entering the room to redirect them. Conclusions The use of video recording technology can provide opportunities for students to review: videos of prospective clients they will be treating, their treatment videos for self-assessment purposes, and for additional data collection. Bluetooth technology provides immediate communication between the clinical educator and the student. Students reported that the result of that communication can improve their self-confidence, perceived performance, and subsequent shift toward independence.


2021 ◽  
Vol 1751 ◽  
pp. 012067
Author(s):  
Junaidi ◽  
T M Putra ◽  
A Surtono ◽  
G A Puazi ◽  
S W Suciyati ◽  
...  

2021 ◽  
pp. 1-11
Author(s):  
Tingting Zhao ◽  
Xiaoli Yi ◽  
Zhiyong Zeng ◽  
Tao Feng

YTNR (Yunnan Tongbiguan Nature Reserve) is located in the westernmost part of China’s tropical regions and is the only area in China with the tropical biota of the Irrawaddy River system. The reserve has abundant tropical flora and fauna resources. In order to realize the real-time detection of wild animals in this area, this paper proposes an improved YOLO (You only look once) network. The original YOLO model can achieve higher detection accuracy, but due to the complex model structure, it cannot achieve a faster detection speed on the CPU detection platform. Therefore, the lightweight network MobileNet is introduced to replace the backbone feature extraction network in YOLO, which realizes real-time detection on the CPU platform. In response to the difficulty in collecting wild animal image data, the research team deployed 50 high-definition cameras in the study area and conducted continuous observations for more than 1,000 hours. In the end, this research uses 1410 images of wildlife collected in the field and 1577 wildlife images from the internet to construct a research data set combined with the manual annotation of domain experts. At the same time, transfer learning is introduced to solve the problem of insufficient training data and the network is difficult to fit. The experimental results show that our model trained on a training set containing 2419 animal images has a mean average precision of 93.6% and an FPS (Frame Per Second) of 3.8 under the CPU. Compared with YOLO, the mean average precision is increased by 7.7%, and the FPS value is increased by 3.


Chemosensors ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 68
Author(s):  
Takahiro Fujisaku ◽  
Ryuji Igarashi ◽  
Masahiro Shirakawa

The dynamics of physical parameters in cells is strongly related to life phenomena; thus, a method to monitor and visualize them on a single-organelle scale would be useful to reveal unknown biological processes. We demonstrate real-time nanometre-scale T1-weighted imaging using a fluorescent nanodiamond. We explored optically detected magnetic resonance (ODMR) contrast at various values of interval laser pulse (τ), showing that sufficient contrast is obtained by appropriate selection of τ. By this method, we visualized nanometre-scale pH changes using a functionalized nanodiamond whose T1 has a dependence on pH conditions.


2021 ◽  
Author(s):  
Julieta Alvarez ◽  
Oswaldo Espinola ◽  
Luis Rodrigo Diaz ◽  
Lilith Cruces

Abstract Increase recovery from mature oil reservoirs requires the definition of enhanced reservoir management strategies, involving the implementation of advanced methodologies and technologies in the field's operation. This paper presents a digital workflow enabling the integration of commonly isolated elements such as: gauges, flowmeters, inflow control devices; analysis methods and data, used to improve scientific understanding of subsurface flow dynamics and determine improved operational decisions that support field's reservoir management strategy. It also supports evaluation of reservoir extent, hydraulic communication, artificial lift impact in the near-wellbore zone and reservoir response to injected fluids and coning phenomenon. This latest is used as an example to demonstrate the applicability of this workflow to improve and support operational decisions, minimizing water and gas production due to coning, that usually results in increasing production operation costs and it has a direct impact decreasing reservoir energy in mature saturated oil reservoirs. This innovative workflow consists on the continuous interpretation of data from downhole gauges, referred in this paper as data-driven; as well as analytical and numerical simulation methodologies using real-time raw data as an input, referred in this paper as model-driven, not commonly used to analyze near wellbore subsurface phenomena like coning and its impact in surface operation. The resulting analyses are displayed through an extensive visualization tool that provides instant insight to reservoir characterization and productivity groups, improving well and reservoir performance prediction capabilities for complex reservoirs such as mature saturated reservoirs with an associated aquifer, where undesired water and gas production is a continuous challenge that incorporates unexpected operational expenses.


2019 ◽  
Vol 89 (3) ◽  
pp. 554-564.e1 ◽  
Author(s):  
Emanuele Rondonotti ◽  
Silvia Paggi ◽  
Arnaldo Amato ◽  
Giuseppe Mogavero ◽  
Alida Andrealli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document