scholarly journals Nanometre-Scale Visualization of Chemical Parameter Changes by T1-Weighted ODMR Imaging Using a Fluorescent Nanodiamond

Chemosensors ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 68
Author(s):  
Takahiro Fujisaku ◽  
Ryuji Igarashi ◽  
Masahiro Shirakawa

The dynamics of physical parameters in cells is strongly related to life phenomena; thus, a method to monitor and visualize them on a single-organelle scale would be useful to reveal unknown biological processes. We demonstrate real-time nanometre-scale T1-weighted imaging using a fluorescent nanodiamond. We explored optically detected magnetic resonance (ODMR) contrast at various values of interval laser pulse (τ), showing that sufficient contrast is obtained by appropriate selection of τ. By this method, we visualized nanometre-scale pH changes using a functionalized nanodiamond whose T1 has a dependence on pH conditions.

1998 ◽  
Vol 536 ◽  
Author(s):  
H. Porteanu ◽  
A. Glozman ◽  
E. Lifshitz ◽  
A. Eychmüller ◽  
H. Weller

AbstractCdS/HgS/CdS nanoparticles consist of a CdS core, epitaxially covered by one or two monolayers of HgS and additional cladding layers of CdS. The present paper describes our efforts to identify the influence of CdS/HgS/CdS interfaces on the localization of the photogenerated carriers deduced from the magneto-optical properties of the materials. These were investigated by the utilization of optically detected magnetic resonance (ODMR) and double-beam photoluminescence spectroscopy. A photoluminescence (PL) spectrum of the studied material, consists of a dominant exciton located at the HgS layer, and additional non-excitonic band, presumably corresponding to the recombination of trapped carriers at the interface. The latter band can be attenuated using an additional red excitation. The ODMR measurements show the existence of two kinds of electron-hole recombination. These electron-hole pairs maybe trapped either at a twin packing of a CdS/HgS interface, or at an edge dislocation of an epitaxial HgS or a CdS cladding layer.


Author(s):  
Asterios Toutios ◽  
Tanner Sorensen ◽  
Krishna Somandepalli ◽  
Rachel Alexander ◽  
Shrikanth S. Narayanan

2020 ◽  
Vol 27 ◽  
Author(s):  
Fırat Kurt

: Oligopeptide transporter 3 (OPT3) proteins are one of the subsets of OPT clade, yet little is known about these transporters. Therefore, homolog OPT3 proteins in several plant species were investigated and characterized using bioinformatical tools. Motif and co-expression analyses showed that OPT3 proteins may be involved in both biotic and abiotic stress responses as well as growth and developmental processes. AtOPT3 usually seemed to take part in Fe homeostasis whereas ZmOPT3 putatively interacted with proteins involved in various biological processes from plant defense system to stress responses. Glutathione (GSH), as a putative alternative chelating agent, was used in the AtOPT3 and ZmOPT3 docking analyses to identify their putative binding residues. The information given in this study will contribute to the understanding of OPT3 proteins’ interactions in various pathways and to the selection of potential ligands for OPT3s.


Author(s):  
Kiran Ahuja ◽  
Brahmjit Singh ◽  
Rajesh Khanna

Background: With the availability of multiple options in wireless network simultaneously, Always Best Connected (ABC) requires dynamic selection of the best network and access technologies. Objective: In this paper, a novel dynamic access network selection algorithm based on the real time is proposed. The available bandwidth (ABW) of each network is required to be estimated to solve the network selection problem. Method: Proposed algorithm estimates available bandwidth by taking averages, peaks, low points and bootstrap approximation for network selection. It monitors real-time internet connection and resolves the selection issue in internet connection. The proposed algorithm is capable of adapting to prevailing network conditions in heterogeneous environment of 2G, 3G and WLAN networks without user intervention. It is implemented in temporal and spatial domains to check its robustness. Estimation error, overhead, estimation time with the varying size of traffic and reliability are used as the performance metrics. Results: Through numerical results, it is shown that the proposed algorithm’s ABW estimation based on bootstrap approximation gives improved performance in terms of estimation error (less than 20%), overhead (varies from 0.03% to 83%) and reliability (approx. 99%) with respect to existing techniques. Conclusion: Our proposed methodology of network selection criterion estimates the available bandwidth by taking averages, peaks, and low points and bootstrap approximation method (standard deviation) for the selection of network in the wireless heterogeneous environment. It monitors real-time internet connection and resolves internet connections selection issue. All the real-time usage and test results demonstrate the productivity and adequacy of available bandwidth estimation with bootstrap approximation as a practical solution for consistent correspondence among heterogeneous wireless networks by precise network selection for multimedia services.


Author(s):  
M. M. Glazov

This chapter is devoted to one of key phenomena in the field of spin physics, namely, resonant absorption of electromagnetic waves under conditions where the Zeeman splitting of spin levels in magnetic field is equal to photon energy. This method is particularly important for identification of nuclear spin effects, because resonance spectra provide fingerprints of different involved spin species and make it possible to distinguish different nuclear isotopes. As discussed in this chapter the nuclear magnetic resonance provides also an access to local magnetic fields acting on nuclear spins. These fields are caused by the magnetic interactions between the nuclei and by the quadrupole splittings of nuclear spin states in anisotropic crystalline environment. Manifestations of spin resonance in optical responses of semiconductors–that is, optically detected magnetic resonance–are discussed.


Sign in / Sign up

Export Citation Format

Share Document