Sensor Ball: Modernized Logging

2021 ◽  
Author(s):  
Erjola Buzi ◽  
Huseyin Seren ◽  
Thomas Hillman ◽  
Timothy Thiel ◽  
Max Deffenbaugh ◽  
...  

Abstract The latest development in the electronics and manufacturing industry has enabled work towards the modernization of oil-field instruments. As a part of this trend, it is the time to invent and design small size oil-field instruments that could be much more practical to handle, easy to use, and less costly. High temperatures and pressures of the downhole environment make it very challenging to design and further develop such downhole instruments. To create such apparatuses, a thorough study of downhole conditions needs to be done upfront. This study will further help to define the design specifications and requirements. By targeting liquid wells in Saudi Arabia, we have overcome the challenges posed by the harsh downhole environment and managed to design and manufacture a hand-held device called ‘Sensor Ball’ and tested it in the field.

2011 ◽  
Vol 308-310 ◽  
pp. 1426-1435 ◽  
Author(s):  
Zahari Taha ◽  
Vin Cent Tai ◽  
Phen Chiak See

This paper describes the design and manufacture of a Miniature Unmanned Aerial Vehicle (MUAV) using the StratasysTM 3D Rapid Prototyping (RP) machine. The main motivation for this work is to demonstrate the rapid product development capabilities of the machine. The polymeric material used in this process is Acrylonitrile-Butadiene-Styrene (ABS). Its superior properties allow the MUAV structure to be built accurately to design specifications. The advantage of this approach is the shorter time required for design, fabrication and deployment.


2019 ◽  
Vol 187 (1) ◽  
pp. 17-20
Author(s):  
Andrew Villanueva ◽  
Braden Goddard

Abstract While it is known that temperatures above 100°C have an effect on the reported dose of a TLD, it is less widely known what the susceptibility is to temperatures below 100°C, temperatures humans could reasonably expect to be exposed to. With the expanding nuclear industry in climates with more extreme temperatures, (e.g. United Arab Emirates and Saudi Arabia) the effect on a TLD if left on a dashboard of a car need to be evaluated. This research experimentally determined the extent of this thermal susceptibility by testing a range of high temperatures, 40°C – 90°C. The experimental results found that there is a statistically significant reduction in TLD-100H (natLiF:Mg,Cu,P) light output for TLDs there were exposed to temperatures as low as 40°C for 8 hour durations and 50°C for 2 hour durations. There is statistical difference in TLD-100H light output for elevated temperature durations of 8 hours compared to 24 hours.


Author(s):  
H. Saadawi

Specifying and selecting equipment for gas compression projects is a complex process involving many engineering disciplines. All the alternatives and the possible interaction between the various components in the system should be carefully examined by the project team. The accumulation of errors in evaluating the system characteristics during the project engineering phase, can lead to the gas compression system not performing to design specifications. This paper describes the problems encountered with the compressor package during the commissioning of four gas turbine-driven compressor stations for gas lift in one of the onshore oilfields in the Middle East. Solutions to these problems are also outlined.


Author(s):  
Madhumitha Ramachandran ◽  
Zahed Siddique

Abstract Rotary seals are found in many manufacturing equipment and machines used for various applications under a wide range of operating conditions. Rotary seal failure can be catastrophic and can lead to costly downtime and large expenses; so it is extremely important to assess the degradation of rotary seal to avoid fatal breakdown of machineries. Physics-based rotary seal prognostics require direct estimation of different physical parameters to assess the degradation of seals. Data-driven prognostics utilizing sensor technology and computational capabilities can aid in the in-direct estimation of rotary seals’ running condition unlike the physics-based approach. An important aspect of data-driven prognostics is to collect appropriate data in order to reduce the cost and time associated with the data collection, storage and computation. Seals in machineries operate in harsh conditions, especially in the oil field, seals are exposed to harsh environment and aggressive fluids which gradually reduces the elastic modulus and hardness of seals, resulting in lower friction torque and excessive leakage. Therefore, in this study we implement a data-driven prognostics approach which utilizes friction torque and leakage signals along with Multilayer Perceptron as a classifier to compare the performance of the two metrics in classifying the running condition of rotary seals. Friction torque was found to have a better performance than leakage in terms of differentiating the running condition of rotary seals throughout its service life. Although this approach was designed for seals in oil and gas industry, this approach can be implemented in any manufacturing industry with similar applications.


2021 ◽  
Vol 5 (1(113)) ◽  
pp. 33-40
Author(s):  
Olexandr Tiahno ◽  
Anatoly Vorozhka ◽  
Mykhailo Ovcharenko ◽  
Mikhailo Loburenko ◽  
Andrey Papchenco

When considering the creation of pumps with improved anti-cavitation characteristics, the results of an in-depth analysis of the problem of pumping viscous liquids at high temperatures are presented. On the example of the technological process of evaporation of sugar syrup on a film evaporator of the latest type, the problem of the occurrence of cavitation when pumping viscous liquids at high temperatures was revealed. After analyzing the existing machines used for the specified operating conditions, critical design and operating parameters were identified that affect the appearance of cavitation. Namely, the appearance of cavitation is influenced by the reduced diameter of the impeller inlet, the diameter of the impeller inlet, the number of blades, the width of the blades and the rotor speed. To study the level of influence of these parameters, a method of physical modeling was chosen, an experimental stand was designed and manufactured. Studies have been carried out on the operation of the pump with and without a reducer. The work with a two- and three-blade inducer is analyzed, the work with an open and closed impeller, with one and two-level blade system is investigated. As a result of the analysis of experimental data, the optimal design of the hydraulic part with a three-blade reducer and a semi-open impeller with a two-level blade system was chosen. In turn, this made it possible to reduce the compression of the flow at the inlet to the impeller without loss of energy efficiency; the angles of inclination of the inducer and impeller blades were synchronized. The experience gained made it possible to design and manufacture an industrial sample of a cantilever pump with an inducer and a semi-open impeller. Thus, allowing to solve the problem of pumping thick syrup on a film evaporating unit of the Teofipol sugar plant (Khmelnytskyi region, Ukraine), with a cavitation reserve of 1.5 m.


Significance He arrived in Malaysia on February 26 and Indonesia on March 1. The tour also includes the Maldives, Brunei and China, and is intended to increase Saudi religious, political and economic influence in the region. Impacts Saudi Arabia-South-east Asia trade will likely diversify. The transnational crime MOU with Indonesia could accelerate Jakarta's drafting of new anti-terrorism laws proposed in 2016. Improved Indonesia-Saudi ties will somewhat insulate Jakarta from tensions over Pertamina’s Iranian oil field investments. Closer Malaysia-Saudi ties could help Malaysia’s Prime Minister Najib Razak politically ahead of the next election.


2013 ◽  
Author(s):  
Rayid S. Al-Anazi ◽  
Shaleh M. Al-Ajmi ◽  
Esshaq M. Al-Hasan ◽  
Mohammed H. Al-Buali

Sign in / Sign up

Export Citation Format

Share Document