Embarking on a New Philosophy: Sand Control Design and Exclusion Method for a Field in Peninsular Malaysia, Best Practices and Lessons Learned for Future Development

2021 ◽  
Author(s):  
Siti Nur Mahirah M Zain ◽  
Nur Hidayah M Zamani ◽  
Sunanda Magna Bela ◽  
Jagaan AL Selladurai ◽  
Saharul Hashim ◽  
...  

Abstract Field D is a massive oil-producing field, which consists of more than 15 blocks that have been developed since 1996. All types of completion methods, from openhole stand-alone screens and cased-hole circulating packs to frac packs, have been applied to help maximize field productivity while keeping sand issues to an acceptable level. However, some wells have begun to encounter sand issues, causing a drop in productivity and in some cases become shut-in because of sand accumulation in the tubing. Small fines (<40 micron) are particularly prominent in the produced sand based on samples collected. A field development revisiting campaign was launched to target new drainage points and recover attic oil using existing slots to sidetrack to the targeted zone and install a new downhole sand control completion. The preferred treatment method is an extension pack (EP) after considering reservoir characteristics, namely close proximity to a coal layer, low permeability, and small fines production, among others. These challenges were addressed by combining the oriented perforation design and optimal sand control completion system using a single-trip multizone system, enhanced single-trip multizone system, and a stack pack with a properly designed proppant pumping strategy using xanthan carrier fluid, a fines-control acid system, and 20/40-mesh ceramic proppant with a 10-gauge wire-wrapped screen. Numerous sand control software simulations were performed to achieve tip screenout (TSO) and a sufficient pack factor while addressing all of the wellbore conditions. For the first time in this field, conductivity enhancer material was applied by dry coating it to proppant on-the-fly with the goal of controlling fines migration through the proppant pack, thus increasing porosity and leading to long-term conductivity. The process design, execution, minifrac analysis, and post-job matching for the frac pack treatment are discussed, which lead to the wells producing sand-free at higher than expected reserves and flow rates. Best practices and lessons learned from this campaign can be further used for new upcoming campaigns.

2021 ◽  
pp. 1-18
Author(s):  
Shaoqing Sun ◽  
David A. Pollitt

Summary Benchmarking the recovery factor and production performance of a given reservoir against applicable analogs is a key step in field development optimization and a prerequisite in understanding the necessary actions required to improve hydrocarbon recovery. Existing benchmarking methods are principally structured to solve specific problems in individual situations and, consequently, are difficult to apply widely and consistently. This study presents an alternative empirical analog benchmarking workflow that is based upon systematic analysis of more than 1,600 reservoirs from around the world. This workflow is designed for effective, practical, and repeatable application of analog analysis to all reservoir types, development scenarios, and production challenges. It comprises five key steps: (1) definition of problems and objectives; (2) parameterization of the target reservoir; (3) quantification of resource potential; (4) assessment of production performance; and (5) identification of best practices and lessons learned. Problems of differing nature and for different objectives require different sets of analogs. This workflow advocates starting with a broad set of parameters to find a wide range of analogs for quantification of resource potential, followed by a narrowly defined set of parameters to find relevant analogs for assessment of production performance. During subsequent analysis of the chosen analogs, the focus is on isolating specific critical issues and identifying a smaller number of applicable analogs that more closely match the target reservoir with the aim to document both best practices and lessons learned. This workflow aims to inform decisions by identifying the best-in-class performers and examining in detail what differentiates them. It has been successfully applied to improve hydrocarbon recovery for carbonate, clastic, and basement reservoirs globally. The case studies provided herein demonstrate that this workflow has real-world utility in the identification of upside recovery potential and specific actions that can be taken to optimize production and recovery.


2021 ◽  
Author(s):  
Ainul Azuan Masngot ◽  
Izzuddin Jamaludin ◽  
Nurul Iffah M. Garib ◽  
Tengku Zuhaili Tengku Yahya ◽  
Hasyimah Ghazali ◽  
...  

Abstract Field development for brownfields nearing their economic thresholds is always challenging, especially in offshore environments. As an operator, innovative approaches are necessary to reduce capital expenditures (CAPEX) and create attractive projects. A marginal cluster consisting of three fields, namely PN, NL, and PR, is expected to reach its economic limit in the next 2 years. This paper elaborates on single-trip completion technology as a catalyst for drilling one infill well in the PR field development project. In 2017, one appraisal well was drilled in a western area of PR field to validate the presence of oil. The scope of work included evaluating reservoir productivity and acquiring bottomhole fluid samples. A drillstem test with four multirate tests was executed for this reservoir. A horizontal development well named PA-02 was proposed and categorized as an extended-reach drilling well because of the drilling complexity. Most offshore wells in shallow-water environments are completed with a conventional well completion run that takes two or more trips, which normally takes more than between 5 and 8 days. Given expensive daily rig rates, the ability to reduce completion installation time was deemed vital to the economics of the project. If the installation incurs additional unnecessary project costs, it can cause the project to be economically unattractive. Using a collaborative approach, an interventionless, single-trip sand control system was designed and selected as the optimal completion solution to meet project demands. Radio-frequency identification (RFID) technology is one of the key enablers for the single-trip completion as it offers the utmost flexibility in both activation and contingency methods to deliver the necessary project cost reduction. At a time of uncertain global crude oil prices, the RFID-enabled single-trip completion concept discussed in this paper has become a beacon of light for operators in an otherwise dark period by allowing previously marginal or sub-economic projects to become viable. This technology has resulted in operational time savings of at least 27% compared to typical conventional two-trip completions in Malaysia offshore environments. Minimizing operational risk is also foreseen by reducing installation to a single integrated upper and lower completion trip. Selecting this RFID-enabled completion facilitated full deployment in one trip in the high-angle well, which eliminated the deployment of a tractor service for a 67% cost savings in this aspect alone. This method represented a paradigm shift in operational efficiency and will now be the operator’s strategic completion methodology when developing marginal fields. The deployment represents the first application of a single-trip completion in an economically challenging brownfield in the Malaysian offshore environment. The reduction in operational time and resultant savings in CAPEX proves that a single-trip completion offers an exceptional alternative to conventional methods in the shallow-water offshore environment.


2020 ◽  
Vol 26 (1) ◽  
pp. 157-162
Author(s):  
Paul Tudorache ◽  
Lucian Ispas

AbstractUsing the lessons learned from recent military operations such as Operation Inherent Resolve (OIR) from Syria and Iraq, we proposed to investigate the need for tactical military units to adapt operationally to grapple with the most common requirements specific to current operational environments, but also for those that can be foreseen in the future. In this regard, by identifying the best practices in the field that can be met at the level of some important armies, such as USA and UK, we will try to determine a common denominator of most important principles whose application may facilitate both operational and organizational adaptation necessary for tactical military units to perform missions and tasks in the most unknown future operational environments.


2021 ◽  
pp. 097340822110125
Author(s):  
Cluny Mendez ◽  
Christopher L. Atkinson

The implementation of sustainability and green public procurement (GPP) initiatives in school districts has been the subject of some debate; questions over definitions and programme goals have led to inconsistency and concerns about programme achievements. The legitimacy of programmes rests not only with the announcement of policy by officials, but with adherence to policy and staff buy-in. This study examines barriers districts face, and makes recommendations based upon district experience on ways to successfully implement sustainability and GPP initiatives. A review of the literature on GPP and legitimacy in the execution of public functions within the education domain begins the study. Major components relative to best practices for GPP programmes are studied through the review of GPP-related documents from a school district in New Jersey considered as an exemplar of such programmes. Analysis of an interview with the district’s representatives suggests that, despite the normative approval such programmes receive, and widespread understanding of the rationale for pursuing such initiatives, there remain critical failings in implementation of these programmes, stemming from education, resourcing of initiatives and prioritization of green procurement in relation to other district priorities. The study concludes with lessons learned from this case, which is important given its positioning within New Jersey as an exemplar and recommendations for future research where work in this area is needed.


2015 ◽  
Vol 14 (4) ◽  
pp. 118-123 ◽  
Author(s):  
Lauren Trees

Purpose – The purpose of this paper is to present enterprise social networking and gamification as two potential tools to help organizations engage Millennial employees in collaboration and learning. Design/methodology/approach – The research provides general descriptions of enterprise social networking and gamification approaches, shares data on adoption of these approaches from APQC’s “2015 Knowledge Management Priorities Data Report” (based on a January 2015 survey of 524 knowledge management professionals) and includes four company examples adapted from APQC’s Connecting People to Content and Transferring and Applying Critical Knowledge best practices studies. The methodology for APQC’s best practices studies involves screening 50 or more organizations with potential best practices in a given research scope area and identifying five or six with proven best practices. APQC then conducts detailed site visits with the selected organizations and publishes case studies based on those site visits. Findings – Enterprise social networking platforms are in place at 50 per cent of organizations, with another 25 per cent planning to implement them by the end of 2015. By providing near-immediate access to information and answers, enterprise social networking helps Millennials learn the ropes at their new workplaces, gives them direct access to more knowledgeable colleagues who can assist and mentor them, and helps them improve their business outcomes by reusing knowledge and lessons learned across projects. Younger workers can also harness the power of social networking to create a sense of belonging and build their reputations in large, dispersed firms, where it is particularly difficult for them to gain visibility. A recent APQC survey indicates that 54 per cent of organizations either currently employ gamification to encourage collaboration or expect to implement it within the next three years. The rush to gamify the enterprise is, at least in part, a reflection of employers’ desire to satisfy Millennials and make them feel connected to a community of co-workers. Although games appeal to a wide range of age groups, Millennials grew up with digital interaction and tend to prefer environments that emphasize teamwork, social learning and frequent feedback – all of which can be delivered through gamification. Originality/value – The value of this paper is to introduce the value of and relationship between enterprise social networking and gamification platforms to human resource (HR) professionals looking to increase engagement and retention rates for Millennial employees.


2015 ◽  
Author(s):  
Mohammed A Madan ◽  
Kousha Gohari ◽  
Roberto Vicario ◽  
Heikki A Jutila ◽  
Hesham A Mohammed

2021 ◽  
Vol 37 (2) ◽  
pp. 244-256
Author(s):  
Ava T. Carcirieri

Academics and practitioners all too often have little or no contact with each other; the practitioner does not know what research exists that can inform their practices, and the academic does not know enough about the institutions they primarily study to make recommendations that are specific enough to inform a concrete practice or policy. I leverage my experiences both as an academic and as a data analyst and domestic violence coordinator at Family Court to outline lessons learned in the field. I detail how my academic training hindered my work as a practitioner, and how practitioners differ in terms of conducting internal research and presenting data and findings. I use my lessons learned and subsequently list several concrete practices that academics can begin to work into their work to increase communication with important stakeholders, and tailor their work to practical systemic improvement. Bridging the gap between academics and practitioners will lead to better research projects, and findings that will be able to actively enact changes within systems that academics focus on.


2021 ◽  
Author(s):  
Vinicius Gasparetto ◽  
Thierry Hernalsteens ◽  
Joao Francisco Fleck Heck Britto ◽  
Joab Flavio Araujo Leao ◽  
Thiago Duarte Fonseca Dos Santos ◽  
...  

Abstract Buzios is a super-giant ultra-deep-water pre-salt oil and gas field located in the Santos Basin off Brazil's Southeastern coast. There are four production systems already installed in the field. Designed to use flexible pipes to tie back the production and injection wells to the FPSOs (Floating Production Storage and Offloading), these systems have taken advantage from several lessons learned in the previous projects installed by Petrobras in Santos Basin pre-salt areas since 2010. This knowledge, combined with advances in flexible pipe technology, use of long-term contracts and early engagement with suppliers, made it possible to optimize the field development, minimizing the risks and reducing the capital expenditure (CAPEX) initially planned. This paper presents the first four Buzios subsea system developments, highlighting some of the technological achievements applied in the field, as the first wide application of 8" Internal Diameter (ID) flexible production pipes for ultra-deep water, leading to faster ramp-ups and higher production flowrates. It describes how the supply chain strategy provided flexibility to cover the remaining project uncertainties, and reports the optimizations carried out in flexible riser systems and subsea layouts. The flexible risers, usually installed in lazy wave configurations at such water depths, were optimized reducing the total buoyancy necessary. For water injection and service lines, the buoyancy modules were completely removed, and thus the lines were installed in a free-hanging configuration. Riser configuration optimizations promoted a drop of around 25% on total riser CAPEX and allowed the riser anchor position to be placed closer to the floating production unit, promoting opportunities for reducing the subsea tieback lengths. Standardization of pipe specifications and the riser configurations allowed the projects to exchange the lines, increasing flexibility and avoiding riser interference in a scenario with multiple suppliers. Furthermore, Buzios was the first ultra-deep-water project to install a flexible line, riser, and flowline, with fully Controlled Annulus Solution (CAS). This system, developed by TechnipFMC, allows pipe integrity management from the topside, which reduces subsea inspections. As an outcome of the technological improvements and the optimizations applied to the Buzios subsea system, a vast reduction in subsea CAPEX it was achieved, with a swift production ramp-up.


Sign in / Sign up

Export Citation Format

Share Document