Incorporation of Neutrally Buoyant Proppants in Horizontal Unconventional Wells to Increase Propped Fracture Area Results for Substantially Improved Well Productivity and Economics

2021 ◽  
Author(s):  
Harold Brannon ◽  
Nicole Hoffman

Abstract Hydraulic fracturing stimulation of unconventional wells employing large volumes of sand in low viscosity fluids provides propped fracture conductivity in less than 25% of the created fracture area, primarily because of poor sand transport mechanics. The remaining unpropped area is at best only marginally productive using the conventional sand/slickwater hydraulic fracturing process alone. Near-neutrally buoyant proppants (NBPs, ASG 1.055) have proven to be highly effective in accessing production from fracture area that is otherwise left unpropped. Fracture models illustrate the propped fracture area of designs incorporating NBPs is improved to over 85% of the created fracture area. Production simulations of typical slickwater and sand frac designs supplemented with NBPs at 3% by weight of sand distributed evenly throughout the slurry stages show cumulative production increases of 20% to greater than 50% compared to the large volume slickwater/sand treatments without NBPs. Efforts have been directed to justification of the incremental expense involved with the NBP applications and assessment of the associated value-added economic metrics, including the value of the realized incremental production vs. time, the payback time for recovery of the incremental costs, and Return on Investment (ROI). For example, in a 2018 trial of NBP wells in the Middle Bakken formation of North Dakota, the production uplift observed for NBP wells achieved payback of the incremental costs in an average of 26 days; the 1-year cumulative oil production of the NBP wells averaged 69,632 barrels greater than control wells, resulting in a 25% uplift compared to the offset control wells. The Year 1 Return on Investment (ROI) for the drilling and completion costs of the first Middle Bakken well with NBP was 97% versus 64% for the sand-only control wells. Controlled multi-stage horizontal completions of wells with sand-only have been evaluated against wells utilizing NBPs in the application have been executed within several unconventional plays, including the Permian and Williston basins. The performance of the NBP wells have consistently validated the production uplift predictions of the production simulation models. The case studies analyzed herein expand the economic assessment of the NBP stimulation designs by including production analyses quantitative comparison of Net Present Value, production decline rates, and projected EURs of the NBP wells and non-NBP offset wells.

TAPPI Journal ◽  
2012 ◽  
Vol 11 (8) ◽  
pp. 17-24 ◽  
Author(s):  
HAKIM GHEZZAZ ◽  
LUC PELLETIER ◽  
PAUL R. STUART

The evaluation and process risk assessment of (a) lignin precipitation from black liquor, and (b) the near-neutral hemicellulose pre-extraction for recovery boiler debottlenecking in an existing pulp mill is presented in Part I of this paper, which was published in the July 2012 issue of TAPPI Journal. In Part II, the economic assessment of the two biorefinery process options is presented and interpreted. A mill process model was developed using WinGEMS software and used for calculating the mass and energy balances. Investment costs, operating costs, and profitability of the two biorefinery options have been calculated using standard cost estimation methods. The results show that the two biorefinery options are profitable for the case study mill and effective at process debottlenecking. The after-tax internal rate of return (IRR) of the lignin precipitation process option was estimated to be 95%, while that of the hemicellulose pre-extraction process option was 28%. Sensitivity analysis showed that the after tax-IRR of the lignin precipitation process remains higher than that of the hemicellulose pre-extraction process option, for all changes in the selected sensitivity parameters. If we consider the after-tax IRR, as well as capital cost, as selection criteria, the results show that for the case study mill, the lignin precipitation process is more promising than the near-neutral hemicellulose pre-extraction process. However, the comparison between the two biorefinery options should include long-term evaluation criteria. The potential of high value-added products that could be produced from lignin in the case of the lignin precipitation process, or from ethanol and acetic acid in the case of the hemicellulose pre-extraction process, should also be considered in the selection of the most promising process option.


1970 ◽  
Vol 3 (1) ◽  
Author(s):  
Fikri Fathurahman Aziz

This study aims to analyze financially (net present value, revenue cost ratio, internal rate of return, break event point, return on investment and payback period) feasibility of kampung super chicken farming Mr. Suparlan in Jojog village, district Pekalongan, East Lampung regency. The data used in the form of quantitative and qualitative data sourced from the primary data and secondary data which is then analyzed descriptively. Based on the analysis, it is known that kampung super farm is financially feasible to cultivate. This is indicated by the positive value of net present value (NPV) of Rp 186,568,517, revenue ratio (RCR) 1.59, internal rate of return (IRR) of 135.82%, return on investment (ROI) of 43%, and the value of payback period (PP) of 0.50. Keywords: financial feasibility, kampung chicken, chicken farm


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2557
Author(s):  
Łukasz Bartela ◽  
Paweł Gładysz ◽  
Charalampos Andreades ◽  
Staffan Qvist ◽  
Janusz Zdeb

The near and mid-term future of the existing Polish coal-fired power fleet is uncertain. The longer-term operation of unabated coal power is incompatible with climate policy and is economically challenging because of the increasing price of CO2 emission allowances in the EU. The results of the techno-economic analysis presented in this paper indicate that the retrofit of existing coal-fired units, by means of replacing coal-fired boilers with small modular reactors, may be an interesting option for the Polish energy sector. It has been shown that the retrofit can reduce the costs in relation to greenfield investments by as much as 35%. This analysis focuses on the repowering of a 460 MW supercritical coal-fired unit based on the Łagisza power plant design with high temperature small modular nuclear reactors based on the 320 MWth unit design by Kairos Power. The technical analyses did not show any major difficulties in integrating. The economic analyses show that the proposed retrofits can be economically justified, and, in this respect, they are more advantageous than greenfield investments. For the base economic scenario, the difference in NPV (Net Present Value) is more favorable for the retrofit by 556.9 M€ and the discounted payback period for this pathway is 10 years.


2021 ◽  
Vol 73 (04) ◽  
pp. 60-61
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 199149, “Rate-Transient-Analysis-Assisted History Matching With a Combined Hydraulic Fracturing and Reservoir Simulator,” by Garrett Fowler, SPE, and Mark McClure, SPE, ResFrac, and Jeff Allen, Recoil Resources, prepared for the 2020 SPE Latin American and Caribbean Petroleum Engineering Conference, originally scheduled to be held in Bogota, Colombia, 17–19 March. The paper has not been peer reviewed. This paper presents a step-by-step work flow to facilitate history matching numerical simulation models of hydraulically fractured shale wells. Sensitivity analysis simulations are performed with a coupled hydraulic fracturing, geomechanics, and reservoir simulator. The results are used to develop what the authors term “motifs” that inform the history-matching process. Using intuition from these simulations, history matching can be expedited by changing matrix permeability, fracture conductivity, matrix-pressure-dependent permeability, boundary effects, and relative permeability. Introduction This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 199149, “Rate-Transient-Analysis-Assisted History Matching With a Combined Hydraulic Fracturing and Reservoir Simulator,” by Garrett Fowler, SPE, and Mark McClure, SPE, ResFrac, and Jeff Allen, Recoil Resources, prepared for the 2020 SPE Latin American and Caribbean Petroleum Engineering Conference, originally scheduled to be held in Bogota, Colombia, 17-19 March. The paper has not been peer reviewed. This paper presents a step-by-step work flow to facilitate history matching numerical simulation models of hydraulically fractured shale wells. Sensitivity analysis simulations are performed with a coupled hydraulic fracturing, geomechanics, and reservoir simulator. The results are used to develop what the authors term “motifs” that inform the history-matching process. Using intuition from these simulations, history matching can be expedited by changing matrix permeability, fracture conductivity, matrix-pressure-dependent permeability, boundary effects, and relative permeability. Introduction The concept of rate transient analysis (RTA) involves the use of rate and pressure trends of producing wells to estimate properties such as permeability and fracture surface area. While very useful, RTA is an analytical technique and has commensurate limitations. In the complete paper, different RTA motifs are generated using a simulator. Insights from these motif simulations are used to modify simulation parameters to expediate and inform the history- matching process. The simulation history-matching work flow presented includes the following steps: 1 - Set up a simulation model with geologic properties, wellbore and completion designs, and fracturing and production schedules 2 - Run an initial model 3 - Tune the fracture geometries (height and length) to heuristic data: microseismic, frac-hit data, distributed acoustic sensing, or other diagnostics 4 - Match instantaneous shut-in pressure (ISIP) and wellhead pressure (WHP) during injection 5 - Make RTA plots of the real and simulated production data 6 - Use the motifs presented in the paper to identify possible production mechanisms in the real data 7 - Adjust history-matching parameters in the simulation model based on the intuition gained from RTA of the real data 8 -Iterate Steps 5 through 7 to obtain a match in RTA trends 9 - Modify relative permeabilities as necessary to obtain correct oil, water, and gas proportions In this study, the authors used a commercial simulator that fully integrates hydraulic fracturing, wellbore, and reservoir simulation into a single modeling code. Matching Fracturing Data The complete paper focuses on matching production data, assisted by RTA, not specifically on the matching of fracturing data such as injection pressure and fracture geometry (Steps 3 and 4). Nevertheless, for completeness, these steps are very briefly summarized in this section. Effective fracture toughness is the most-important factor in determining fracture length. Field diagnostics suggest considerable variability in effective fracture toughness and fracture length. Typical half-lengths are between 500 and 2,000 ft. Laboratory-derived values of fracture toughness yield longer fractures (propagation of 2,000 ft or more from the wellbore). Significantly larger values of fracture toughness are needed to explain the shorter fracture length and higher net pressure values that are often observed. The authors use a scale- dependent fracture-toughness parameter to increase toughness as the fracture grows. This allows the simulator to match injection pressure data while simultaneously limiting fracture length. This scale-dependent toughness scaling parameter is the most-important parameter in determining fracture size.


Sign in / Sign up

Export Citation Format

Share Document