UAE's First End to End Standardized Workflow-Based Digital Transformation in a Giant Gas Producing Asset - Lessons Learned and Way Forward

2021 ◽  
Author(s):  
Ayesha Ahmed Abdulla Salem Alsaeedi ◽  
Manar Maher Mohamed Elabrashy ◽  
Mohamed Ali Alzeyoudi ◽  
Mohamed Mubarak Albadi ◽  
Sandeep Soni ◽  
...  

Abstract The concept of integrated modeling and digital transformation has grown within the oil and gas industry over the past decade and every such digital transformation has its own set of challenges from which significant learnings can be derived to enhance the knowledge base of the industry. This paper encompasses the successful achievement journey from the UAE's first end to end standardized workflow- based digital transformation in a giant gas producing asset, where several key challenges and learnings have been summarized that are originated from a unique project for a giant gas-condensate asset. The role and importance from multiple business stakeholders such as the planning, engineering, operations and performance teams was imperative to establish a collaborative working philosophy and a detailed specification document, the end-to-end solution, functional and non-functional requirements were captured and aligned with end-user needs. Firstly, a detailed offline phase along with focused efforts in understanding data-quality and establishing representative base-models, was key to enhance the benefit-realization of the integrated platform. Secondly, the online implementation helped in achieving significant process efficiency improvement as inbuilt data validation features significantly improved the confidence of the output. The diagnostic workflows replaced the conventional spreadsheet-based approach. The digital platform works as a common reference of "truth" for everyone across the organization. It helped to produce several the business KPIs to assist the engineers in emphasizing on the problem area, such as improved well test planning.

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Thumeera R. Wanasinghe ◽  
Trung Trinh ◽  
Trung Nguyen ◽  
Raymond G. Gosine ◽  
Lesley Anne James ◽  
...  

2021 ◽  
Vol 73 (08) ◽  
pp. 60-61
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 201272, “Lessons Learned in Developing Human Capital for the Oil and Gas Industry in Kazakhstan,” by Zhassulan Dairov, SPE, KIMEP University and Satbayev University; Murat Syzdykov, SPE, Satbayev University; and Jennifer Miskimins, SPE, Colorado School of Mines, prepared for the 2020 SPE Annual Technical Conference and Exhibition, originally scheduled to be held in Denver, Colorado, 5–7 October. The paper has not been peer reviewed. The World Economic Forum’s (WEF) Human Capital initiative has been implemented at Satbayev University (SU), Almaty, Kazakhstan, during the last 2 years. Participating in this effort are Chevron, Eni, Shell, and the Colorado School of Mines (Mines). The complete paper assesses the effectiveness of project components, such as industry guest lectures, summer internships, and program improvement, and provides lessons learned for human-resource-development initiatives. Introduction In most cases, the industry/ university alliance is intermittent, short-term, and underdeveloped. The engagement of three stakeholders, such as government, industry, and the university, is the most-successful model of joint performance. This approach allows all participants to create competitive advantages in the achievement of common objectives. Moreover, the role of governmental agencies is critical alongside professional organizations in facilitating such cooperation.


2021 ◽  
Author(s):  
Jonathan Kent Longridge ◽  
Johnny Shield ◽  
Sarah Finn ◽  
Tom Fulton

Objectives/Scope As the offshore oil and gas industry has changed, deep water Mobile Offshore Drilling Units (MODU) are commonly outfitted with dynamic positioning (DP) systems and on-vessel mooring equipment to facilitate drilling operations at ultra-deep and shallow water well locations. However, since many shallow water locations can experience harsh conditions and may require moorings for station-keeping performance, it is beneficial to enable a DP rig to quickly disconnect from its mooring system and avoid hazardous conditions without support vessel assistance. Providing this capability, acoustically releasable subsea mooring connectors allow a rig's mooring lines to be released remotely and almost immediately. Additionally, the ability to disconnect without Anchor Handler Vessel (AHV) assistance for mooring operations and rig transit support offers reduced risk and cost savings. Methods, Procedures, Process A brief review of existing quick-disconnect mooring devices will be presented. It will highlight how the technology has evolved and is being used, particularly in recent years. Successes, problems, and lessons learned from past InterMoor and SRP product development will be summarized and focused attention will be given to a significant number of more recent improvements to increase the product's reliability, availability, serviceability, and robustness. Improvements to ensure reliable long-term battery life and power supply, enhance on-vessel accessibility and user-friendliness for rig personnel, and employ advanced acoustic signal transmission, reception, and device status analytics will be discussed. External modifications to reinforce its robustness during deployment and internal electromechanical changes to facilitate its serviceability will also be described. Results, Observations, Conclusions A substantially lighter and smaller acoustically releasable mooring connector was developed two years ago, tested thereafter, recently deployed on several offshore mooring campaigns, and has now been upgraded to incorporate high-fidelity electronics with the ability to release under tension loads as high as 900 tonnes. As such, this second-generation device's reliability, accessibility, and serviceability are significantly enhanced. Results from offshore deployments from recent MODU and barge mooring operations will be summarized. This technology provides a safer way to quickly disconnect mooring lines and offers cost efficiency by allowing faster rig moves from one location to the next with reduced risk. Novel/Additive Information The paper will cover the work, challenges, trials, and tribulations required to bring a new product to market with cutting edge capabilities. Novel highlights will include the integration of a networked data transmission and communication system, the system's fundamental change from pneumatic to electromechanical actuation, and additional enhancements and improvements that are unique to mooring quick-disconnect devices and at the forefront of subsea technology.


2009 ◽  
Vol 12 (04) ◽  
pp. 630-638 ◽  
Author(s):  
Reidar B. Bratvold ◽  
J. Eric Bickel ◽  
Hans Petter Lohne

Summary An important task that petroleum engineers and geoscientists undertake is to produce decision-relevant information. Some of the most important decisions we make concern what type and what quality of information to produce. When decisions are fraught with geologic and market uncertainties, this information gathering may such forms as seismic surveys, core and well test analyses, reservoir simulations, market analyses, and price forecasts--which the industry spends billions of US dollars each year. Yet, considerably less time and resources are expended on assessing the profitability or value of this information. Why is that? This paper addresses how to make value-of-information (VOI) analysis more accessible and useful by discussing its past, present, and future. On the basis of a survey of SPE publications, we provide an overview of the use of VOI in the oil and gas industry, focusing on how the analysis was carried out and for which types of decisions VOI analysis has been performed. We highlight areas in which VOI methods have been used successfully and identify important challenges. We then identify and discuss the possible causes for the limited use of VOI methods and suggest ways to increase the use of this powerful analysis tool. Introduction One of the most useful features of decision analysis is its ability to distinguish between constructive and wasteful information gathering. VOI analysis evaluates the benefits of collecting additional information before making a decision. Such information gathering may be worthwhile if it holds the possibility of changing the decision that would be made without further information. VOI attributes no value to "uncertainty reduction" or "increased confidence" per se. Rather, value is added by enabling the decision maker (DM) to better "tune" his/her choice to the underlying uncertainty. Thus, information value is forever an entanglement of uncertainty and decision making; one cannot value information outside of a particular decision context.


Author(s):  
Warren Brown ◽  
Geoff Evans ◽  
Lorna Carpenter

Over the course of the past 20 years, methods have been developed for assessing the probability and root cause of bolted joint leakage based on sound engineering assessment techniques. Those methods were incorporated, in part, into ASME PCC-1-2010 Appendix O [7] and provide the only published standard method for establishing bolted joint assembly bolt load. As detailed in previous papers, the method can also be used for troubleshooting joint leakage. This paper addresses a series of actual joint leakage cases, outlines the analysis performed to determine root cause of failure and the actions taken to successfully eliminate future incidents of failure (lessons learned).


Author(s):  
Carlo De Bernardi

Abstract The API 20S Standard is designed to play a crucial role in leveraging Additive Manufacturing (AM) to foster innovation in the oil and gas industry. The paper, in association with the standard, will facilitate the understanding of how AM will enable equipment design improvements, faster prototyping, and better inventory management. By way of discussing the progress, challenges, and lessons learned from the standardization process, the paper aims to encourage a safer, broader, and faster adoption of AM technologies in the mainstream oil and gas applications. The paper will summarize the streamlining process, feedback from the API 20S task group, and current status of the standardization efforts. Additionally, upcoming challenges and the potential for the oil and gas industry industries to contribute to the standard will be summarized. The paper will also showcase a novel tiered approach (Additive Manufacturing Specification Levels) to allow the users of the document to match different levels of criticality.


Author(s):  
O.E. Malykh ◽  
◽  
Yu.V. Khodkovskaya ◽  

The problems of global economic growth are largely due to factors in the dynamics of the oil and gas sector. New requirements for the quality, quantity and timing of the supply of hydrocarbons create opportunities for the development and increase of the efficiency of the oil and gas business, including the growth of its capitalization. For the oil and gas industry, the digital transformation goes beyond the tactical use of technology, the business model is being transformed by accelerating the spread of innovation and the constant growth of practical efficiency, which significantly changes strategic guidelines. The article presents an analysis of the impact of digital technology on the financial aspects of the oil and gas business. The objective obstacles to its digitalization are described, which can form the basis for developing recommendations for promoting digital technologies in this segment of the economy. The advancement of scientific and technological progress and the automation of many stages of production processes are factors in the possible growth in the capitalization of the oil and gas business. Studies have shown that existing technologies are not always able to facilitate this process. Underfunding of the information and computing infrastructure of companies can become a serious problem on the way to strengthening the financial component of the oil and gas business. In the Russian oil and gas industry, the use of additional digital platforms and innovations is an additional advantage for increasing operating profit. The article discusses the cybersecurity of the oil and gas business based on an integrated approach and the implementation of all aspects of the oil and gas company: information, organizational and technological. A group of cyber defense tools is proposed. A new model of the digital transformation of oil and gas companies is proposed to formulate an action plan for the use of digital technologies, to solve tactical problems and strategic goals of the oil and gas business, to ensure its capitalization growth. It is shown that business capitalization under the influence of digital technologies allows the oil and gas industry to implement the latest achievements in the field of cloud computing, digitalization of oil fields, service-oriented architectures and industrialization, significantly expanding the possibilities of corporate financial management.


Author(s):  
Peter C. G. Veenstra

The Pipeline Open Data Standard (PODS) Association develops and advances global pipeline data standards and best practices supporting data management and reporting for the oil and gas industry. This presentation provides an overview of the PODS Association and a detailed overview of the transformed PODS Pipeline Data Model resulting from the PODS Next Generation initiative. The PODS Association’s Next Generation, or Next Gen, initiative is focused on a complete re-design and modernization of the PODS Pipeline Data Model. The re-design of the PODS Pipeline Data Model is driven by PODS Association Strategy objectives as defined in its 2016–2019 Strategic Plan and reflects nearly 20 years of PODS Pipeline Data Model implementation experience and lessons learned. The Next Gen Data Model is designed to be the system of record for pipeline centerlines and pressurized containment assets for the safe transport of product, allowing pipeline operators to: • Achieve greater agility to build and extend the data model, • respond to new business requirements, • interoperate through standard data models and consistent application interface, • share data within and between organizations using well defined data exchange specifications, • optimize performance for management of bulk loading, reroute, inspection data and history. The presentation will introduce the Next Gen Data Model design principles, conceptual, logical and physical structures with a focus on transformational changes from prior versions of the Model. Support for multiple platforms including but not limited to Esri ArcGIS, open source GIS and relational database management systems will be described. Alignment with Esri’s ArcGIS Platform and ArcGIS for Pipeline Referencing (APR) will be a main topic of discussion along with how PODS Next Gen can be leveraged to benefit pipeline integrity, risk assessment, reporting and data maintenance. The end goal of a PODS implementation is a realization of data management efficiency, data transfer and exchange, to make the operation of a pipeline safer and most cost effective.


Sign in / Sign up

Export Citation Format

Share Document