Pipeline Open Data Standard (PODS) Next Generation Data Model

Author(s):  
Peter C. G. Veenstra

The Pipeline Open Data Standard (PODS) Association develops and advances global pipeline data standards and best practices supporting data management and reporting for the oil and gas industry. This presentation provides an overview of the PODS Association and a detailed overview of the transformed PODS Pipeline Data Model resulting from the PODS Next Generation initiative. The PODS Association’s Next Generation, or Next Gen, initiative is focused on a complete re-design and modernization of the PODS Pipeline Data Model. The re-design of the PODS Pipeline Data Model is driven by PODS Association Strategy objectives as defined in its 2016–2019 Strategic Plan and reflects nearly 20 years of PODS Pipeline Data Model implementation experience and lessons learned. The Next Gen Data Model is designed to be the system of record for pipeline centerlines and pressurized containment assets for the safe transport of product, allowing pipeline operators to: • Achieve greater agility to build and extend the data model, • respond to new business requirements, • interoperate through standard data models and consistent application interface, • share data within and between organizations using well defined data exchange specifications, • optimize performance for management of bulk loading, reroute, inspection data and history. The presentation will introduce the Next Gen Data Model design principles, conceptual, logical and physical structures with a focus on transformational changes from prior versions of the Model. Support for multiple platforms including but not limited to Esri ArcGIS, open source GIS and relational database management systems will be described. Alignment with Esri’s ArcGIS Platform and ArcGIS for Pipeline Referencing (APR) will be a main topic of discussion along with how PODS Next Gen can be leveraged to benefit pipeline integrity, risk assessment, reporting and data maintenance. The end goal of a PODS implementation is a realization of data management efficiency, data transfer and exchange, to make the operation of a pipeline safer and most cost effective.

2021 ◽  
Vol 73 (08) ◽  
pp. 60-61
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 201272, “Lessons Learned in Developing Human Capital for the Oil and Gas Industry in Kazakhstan,” by Zhassulan Dairov, SPE, KIMEP University and Satbayev University; Murat Syzdykov, SPE, Satbayev University; and Jennifer Miskimins, SPE, Colorado School of Mines, prepared for the 2020 SPE Annual Technical Conference and Exhibition, originally scheduled to be held in Denver, Colorado, 5–7 October. The paper has not been peer reviewed. The World Economic Forum’s (WEF) Human Capital initiative has been implemented at Satbayev University (SU), Almaty, Kazakhstan, during the last 2 years. Participating in this effort are Chevron, Eni, Shell, and the Colorado School of Mines (Mines). The complete paper assesses the effectiveness of project components, such as industry guest lectures, summer internships, and program improvement, and provides lessons learned for human-resource-development initiatives. Introduction In most cases, the industry/ university alliance is intermittent, short-term, and underdeveloped. The engagement of three stakeholders, such as government, industry, and the university, is the most-successful model of joint performance. This approach allows all participants to create competitive advantages in the achievement of common objectives. Moreover, the role of governmental agencies is critical alongside professional organizations in facilitating such cooperation.


2021 ◽  
Author(s):  
Jonathan Kent Longridge ◽  
Johnny Shield ◽  
Sarah Finn ◽  
Tom Fulton

Objectives/Scope As the offshore oil and gas industry has changed, deep water Mobile Offshore Drilling Units (MODU) are commonly outfitted with dynamic positioning (DP) systems and on-vessel mooring equipment to facilitate drilling operations at ultra-deep and shallow water well locations. However, since many shallow water locations can experience harsh conditions and may require moorings for station-keeping performance, it is beneficial to enable a DP rig to quickly disconnect from its mooring system and avoid hazardous conditions without support vessel assistance. Providing this capability, acoustically releasable subsea mooring connectors allow a rig's mooring lines to be released remotely and almost immediately. Additionally, the ability to disconnect without Anchor Handler Vessel (AHV) assistance for mooring operations and rig transit support offers reduced risk and cost savings. Methods, Procedures, Process A brief review of existing quick-disconnect mooring devices will be presented. It will highlight how the technology has evolved and is being used, particularly in recent years. Successes, problems, and lessons learned from past InterMoor and SRP product development will be summarized and focused attention will be given to a significant number of more recent improvements to increase the product's reliability, availability, serviceability, and robustness. Improvements to ensure reliable long-term battery life and power supply, enhance on-vessel accessibility and user-friendliness for rig personnel, and employ advanced acoustic signal transmission, reception, and device status analytics will be discussed. External modifications to reinforce its robustness during deployment and internal electromechanical changes to facilitate its serviceability will also be described. Results, Observations, Conclusions A substantially lighter and smaller acoustically releasable mooring connector was developed two years ago, tested thereafter, recently deployed on several offshore mooring campaigns, and has now been upgraded to incorporate high-fidelity electronics with the ability to release under tension loads as high as 900 tonnes. As such, this second-generation device's reliability, accessibility, and serviceability are significantly enhanced. Results from offshore deployments from recent MODU and barge mooring operations will be summarized. This technology provides a safer way to quickly disconnect mooring lines and offers cost efficiency by allowing faster rig moves from one location to the next with reduced risk. Novel/Additive Information The paper will cover the work, challenges, trials, and tribulations required to bring a new product to market with cutting edge capabilities. Novel highlights will include the integration of a networked data transmission and communication system, the system's fundamental change from pneumatic to electromechanical actuation, and additional enhancements and improvements that are unique to mooring quick-disconnect devices and at the forefront of subsea technology.


Author(s):  
Warren Brown ◽  
Geoff Evans ◽  
Lorna Carpenter

Over the course of the past 20 years, methods have been developed for assessing the probability and root cause of bolted joint leakage based on sound engineering assessment techniques. Those methods were incorporated, in part, into ASME PCC-1-2010 Appendix O [7] and provide the only published standard method for establishing bolted joint assembly bolt load. As detailed in previous papers, the method can also be used for troubleshooting joint leakage. This paper addresses a series of actual joint leakage cases, outlines the analysis performed to determine root cause of failure and the actions taken to successfully eliminate future incidents of failure (lessons learned).


2011 ◽  
Vol 51 (2) ◽  
pp. 716
Author(s):  
Peter Smith ◽  
Iain Paton

The large number of wells associated with typical coal seam gas (CSG) developments in Australia has changed the paradigm for field management and optimisation. Real time data access, automation and optimisation—which have been previously considered luxuries in conventional resources—are key to the development and operation of fields, which can easily reach more than 1,000 wells. The particular issue in Australia of the shortage of skilled labour and operators has increased pressure to automate field operations. This extended abstract outlines established best practices for gathering the numerous data types associated with wells and surface equipment, and converting that data into information that can inform the decision processes of engineers and managers alike. There will be analysis made of the existing standard, tools, software and data management systems from the conventional oil and gas industry, as well as how some of these can be ported to the CSG fields. The need to define industry standards that are similar to those developed over many years in the conventional oil and gas industry will be discussed. Case studies from Australia and wider international CSG operations will highlight the innovative solutions that can be realised through an integrated project from downhole to office, and how commercial off the shelf solutions have advantages over customised one-off systems. Furthermore, case studies will be presented from both CSG and conventional fields on how these enabling technologies translate into increased production, efficiencies and lift optimisation and move towards the goal of allowing engineers to make informed decisions as quickly as possible. Unique aspects of CSG operations, which require similarly unique and innovative solutions, will be highlighted in contrast to conventional oil and gas.


Author(s):  
Carlo De Bernardi

Abstract The API 20S Standard is designed to play a crucial role in leveraging Additive Manufacturing (AM) to foster innovation in the oil and gas industry. The paper, in association with the standard, will facilitate the understanding of how AM will enable equipment design improvements, faster prototyping, and better inventory management. By way of discussing the progress, challenges, and lessons learned from the standardization process, the paper aims to encourage a safer, broader, and faster adoption of AM technologies in the mainstream oil and gas applications. The paper will summarize the streamlining process, feedback from the API 20S task group, and current status of the standardization efforts. Additionally, upcoming challenges and the potential for the oil and gas industry industries to contribute to the standard will be summarized. The paper will also showcase a novel tiered approach (Additive Manufacturing Specification Levels) to allow the users of the document to match different levels of criticality.


2007 ◽  
Vol 01 (02) ◽  
pp. 05-06
Author(s):  
Tony Meggs

Executive Perspective - Attracting, developing, and inspiring the talented young people who will lead the oil and gas industry into the future is one of the biggest challenges facing our industry today. Creating this future will be at least as exciting and demanding as anything we have experienced over the past 30 years.


2016 ◽  
Vol 50 (3) ◽  
pp. 23-33 ◽  
Author(s):  
Ana Lara-Lopez ◽  
Tim Moltmann ◽  
Roger Proctor

AbstractAustralia's Integrated Marine Observing System (IMOS) is entering its second decade of operation, with data streams developing and growing and long-term time series of key variables being built. Although IMOS was established under an Australian government research infrastructure program to deliver ocean observations to marine and climate scientists, its open-data approach has translated into broader use of data streams including for operational uses and applications. IMOS has applied a “data-centric” definition of research infrastructure, which has enabled it to invest in the full cost of infrastructure all the way to the delivery of quality controlled data. This decision to dedicate funding for data management and integration together with its open-data policy resulted in IMOS establishing itself as a “need-driven” national capability with great relevance and impact. Early establishment of best practices in data management and partnering with the ocean and coastal modeling community ensured data uptake and use. However, some issues that need resolving still remain, and larger investment for data quality control at whole-of-program level is clearly paramount. As IMOS heads toward its second decade, it is a good opportunity to tackle this issue.


2021 ◽  
Author(s):  
Jean-Francois Gauthier

Abstract Satellites are a powerful tool in monitoring methane emissions around the world. In the last five years, many new systems have been both announced and deployed, each with different capabilities and designed for a specific purpose. With an increase in options also comes confusion as to how these systems can and should be used, especially in meeting the needs of the oil and gas industry. This paper will examine the different satellite systems available and explain what information they are best suited to provide. The performance parameters of several current and future satellite systems will be presented and supported with recent examples when available. For example, the importance of factors like frequency of revisit, detection threshold, and spatial resolution will be discussed and contrasted with the needs of the oil and gas industry in gaining a more complete understanding of its methane emissions and enabling action to mitigate them. Results from GHGSat's second generation of high-resolution satellites displaying measurements of methane plumes at oil and gas facilities around the world will be presented to demonstrate some of the advantages of the technology. These two satellites, GHGSat-C1 and C2 (Iris and Hugo), were launched in September 2020 and January 2021 respectively and have started delivering a tenfold improvement in performance after incorporating the lessons learned from their predecessor, GHGSat's demonstration satellite Claire. Finally, the ability of these systems to work together and complement each other's capabilities to provide actionable insight to the oil and gas industry will be discussed.


Sign in / Sign up

Export Citation Format

Share Document