Aplicability of an Innovative and Light Seismic Approach to Monitor SAGD Operations in Surmont: A Blind Test

2021 ◽  
Author(s):  
Victoria Brun ◽  
Elodie Morgan ◽  
Brad Gerl ◽  
Luis Cardozo ◽  
Jeremie Batias

Abstract Surmont is a heavy oil field located in northeast Alberta which is currently being developed by a joint venture between ConocoPhillips and Total using Steam Assisted Gravity Drainage (SAGD). To monitor the enhanced oil recovery process and caprock integrity, highly repeatable 4D seismic surveys using dynamite have been completed over the years. In order to maximize the value of information while controlling costs, a novel light seismic monitoring approach has been "blind-tested" on existing 4D data. The concept requires the use of only one source and one receiver couple, optimally placed in the field to monitor one or several subsurface spots, using time redundancy to detect 4D changes in these zones of interest. Three spot locations have been defined by the client on a well pad for which the history was not provided. For each of these spots, specific series of seismic processing steps have enabled the identification of the optimum source/receiver locations. Then, these optimum raw seismic traces extracted from different 4D campaigns have been analysed to detect potential time shift changes in the selected horizon induced by the growth of the steam chamber. Time-shift changes were plotted for all 3 spots. An increase was observed for one of the spots (Spot 3) from the first 4D monitor in 2010 up to the last monitor in 2015. An increase was also plotted between March 2013 and September 2013 for another spot (Spot 1), changes attributed to the dynamics of the steam chamber. On the contrary, spot 1 did not see any effect of the steam. These time-shift changes were then successfully cross-checked with temperature data from observation wells, confirming the qualitative variations attributed to the effects of the steam chamber evolution. It demonstrated the viability of this innovative seismic and focused monitoring approach to monitor the evolution of the steam chamber in Surmont. This also paves the way for a simpler and yet reliable and cost-effective way of monitoring the evolution of the steam chamber to further optimize production and increase rentability.

SPE Journal ◽  
2018 ◽  
Vol 24 (02) ◽  
pp. 477-491 ◽  
Author(s):  
Enrique Gallardo ◽  
Clayton V. Deutsch

Summary Steam-assisted gravity drainage (SAGD) is a thermal-recovery process to produce bitumen from oil sands. In this technology, steam injected in the reservoir creates a constantly evolving steam chamber while heated bitumen drains to a production well. Understanding the geometry and the rate of growth of the steam chamber is necessary to manage an economically successful SAGD project. This work introduces an approximate physics-discrete simulator (APDS) to model the steam-chamber evolution. The algorithm is formulated and implemented using graph theory, simplified porous-media flow equations, heat-transfer concepts, and ideas from discrete simulation. The APDS predicts the steam-chamber evolution in heterogeneous reservoirs and is computationally efficient enough to be applied over multiple geostatistical realizations to support decisions in the presence of geological uncertainty. The APDS is expected to be useful for selecting well-pair locations and operational strategies, 4D-seismic integration in SAGD-reservoir characterization, and caprock-integrity assessment.


Geophysics ◽  
1992 ◽  
Vol 57 (3) ◽  
pp. 488-494 ◽  
Author(s):  
R. P. Ranganayaki ◽  
S. E. Akturk ◽  
S. M. Fryer

An investigation of the pre‐ and poststeam resistivity logs, in a production pattern in a heavy‐oil field in Southern California, shows that the formation resistivity in steamed formations decreases by a factor of two to three. Shales as well as sands are affected by the steam flood. The observed drop in the resistivity of the reservoir correlates well with the increase in temperature. The study shows the potential of using resistivity variations to map and monitor thermal enhanced oil recovery process.


Geophysics ◽  
2016 ◽  
Vol 81 (4) ◽  
pp. E227-E241 ◽  
Author(s):  
Sarah G. R. Devriese ◽  
Douglas W. Oldenburg

We have investigated the use of electric and electromagnetic (EM) methods to monitor the growth of steam-assisted gravity drainage (SAGD) steam chambers. SAGD has proven to be a successful method for extracting bitumen from the Athabasca oil sands in Alberta, Canada. However, complexity and heterogeneity within the reservoir could impede steam chamber growth, thereby limiting oil recovery and increase production costs. Using seismic data collected over an existing SAGD project, we have generated a synthetic steam chamber and modeled it as a conductive body within the bitumen-rich McMurray Formation. Simulated data from standard crosswell electrical surveys, when inverted in three dimensions, show existence of the chamber but lack the resolution necessary to determine the shape and size. By expanding to EM surveys, our ability to recover and resolve the steam chamber is significantly enhanced. We use a simplified survey design procedure to design a variety of field surveys that include surface and borehole transmitters operating in the frequency or time domain. Each survey is inverted in three dimensions, and the results are compared. Importantly, despite the shielding effects of the highly conductive cap rock over the McMurray Formation, we have determined that it is possible to electromagnetically excite the steam chamber using a large-loop surface transmitter. This motivates a synthetic example, constructed using the geology and resistivity logging data of a future SAGD site, where we simulate data from single and multiple surface loop transmitters. We have found that even when measurements are restricted to the vertical component of the electric field in standard observation wells, if multiple transmitters are used, the inversion recovers three steam chambers and discerns an area of limited steam growth that results from a blockage in the reservoir. The effectiveness of the survey shows that this EM methodology is worthy of future investigation and field deployment.


Author(s):  
Noalwenn Dubos-Sallée ◽  
André Fourno ◽  
Jeanneth Zarate-Rada ◽  
Véronique Gervais ◽  
Patrick N. J. Rasolofosaon ◽  
...  

In an Enhanced Oil Recovery (EOR) process, one of the main difficulties is to quickly evaluate if the injected chemical products actually improve oil recovery in the reservoir. The efficiency of the process can be monitored in the vicinity of wells, but it may take time to estimate it globally in the reservoir. The objective of this paper is to investigate the ability of 4D seismics to bridge this gap and to help predict the success or breakdown of a production strategy at reservoir scale. To that purpose, we consider a complete workflow for simulating realistic reservoir exploitation using chemical EOR and 4D seismic modeling. This workflow spans from geological description to seismic monitoring simulation and seismic attributes analysis, through geological and reservoir modeling. It is applied here on a realistic case study derived from an outcrop analog of turbiditic reservoirs, for which the efficiency of chemical EOR by polymer and surfactant injection is demonstrated. For this specific field monitoring application, the impact of both waterflooding and proposed EOR injection is visible on the computed seismics. However, EOR injection induces a more continuous water front that can be clearly visible on seismics. In this case, the EOR efficiency can thus be related to the continuity of the water front as seen on seismics. Nevertheless, in other cases, chemical EOR injections may have more moderate impacts, or the field properties may be less adapted to seismic monitoring. This points out the importance of the proposed workflow to check the relevance of seismic monitoring and to design the most adapted monitoring strategy. Numerous perspectives are proposed at the end of the paper. In particular, experts of the different disciplines involved in the proposed workflow can benefit from the availability of a complete set of well-controlled data of various types to test and improve their own tools. In contrast, the non-experts can easily and quickly benefit from “hands-on” experiments for understanding the involved phenomena. Furthermore, the proposed workflow can be directly applied to geological reservoirs all over the world.


Geosciences ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 203
Author(s):  
Evgeny Chekhonin ◽  
Raisa Romushkevich ◽  
Evgeny Popov ◽  
Yury Popov ◽  
Alexander Goncharov ◽  
...  

Within the vast category of unconventional resources, heavy oils play an essential role as related resources are abundant throughout the world and the amount of oil produced using thermal methods is significant. Simulators for thermo–hydro–dynamic modeling, as a mandatory tool in oilfield development, are continuously improving. However, the present paper shows that software capabilities for the integration of data on the rock thermal properties necessary for modeling are limited, outdated in some aspects, and require revision. In this paper, it is demonstrated that a characteristic lack of reliable data on rock thermal properties also leads to significant errors in the parameters characterizing oil recovery efficiency. A set of advanced methods and equipment for obtaining reliable data on thermal properties is presented, and a new, vast set of experimental data on formation thermal properties obtained from the Karabikulovskoye heavy oil field (Russia) is described. The time-dependent results of modeling oil recovery at the field segment using the steam-assisted gravity drainage method with both published and new data are discussed. It is shown that the lack of experimental data leads to significant errors in the evaluation of the cumulative oil production (up to 20%) and the cumulative steam/oil ratio (up to 52%).


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1743
Author(s):  
Bikash D. Saikia ◽  
Dandina N. Rao

The U.S. Deepwater Gulf of Mexico (DGOM) area that has some of the most prolific oil reservoirs is still awaiting the development of a viable enhanced oil recovery (EOR) process. Without it, DGOM will remain severely untapped. Exorbitant well costs, in excess of $200 million, preclude having extensive injection patterns, commonly used in EOR design frameworks. Aside from injection patterns, even operationally waterflooding has met with significant challenges because of injectivity issues in these over pressurized turbidities. The gas-assisted gravity drainage (GAGD) EOR process, that holds promise for deepwater environments because of lesser injectivity issues, among others, has been adapted in this work to overcome these limitations. A novel design in the form of a single well—gas assisted gravity drainage (SW-GAGD) process, has been demonstrated to emulate the benefits of a GAGD process in a cost-effective manner. Unlike conventional GAGD processes, which need multiple injectors and separate horizontal production wells, the SW-GAGD process just uses a single well for injection and well production. The performance of the process has been established using partially scaled visual glass models based on dimensional analyses for scale up of the process. The recovery factor has been shown to be in the range of 65–80% in the immiscible mode alone, and the process is orders of magnitude faster than natural gravity drainage. A toe-to-heel configuration of the SW-GAGD process has also been tested and for the configuration to be immune from reservoir layering, the toe of the well should ideally end at the top of the payzone. Better sweep of the payzone and consequent high recovery factor of 80% OOIP was observed, if the heel part of the bottom lateral is located in a lower permeability zone.


Author(s):  
L.S. Kuleshova ◽  
◽  
I.G. Fattakhov ◽  
Sh.Kh. Sultanov ◽  
R.U. Rabaev ◽  
...  

The paper presents the possibilities of expanding production opportunities in the oil company PJSC Tatneft. For this purpose, the well No.xxx7g with an inclined pilot borehole was drilled at the Bavlinskoye oil field and oriented core samples were taken to study the lithological cross-section and the geological structure of the subsurface horizons. The horizontal wellbore itself is located in the dankovo-lebedyansky horizon, where multi-zone hydraulic fracturing was carried out through ports with packers there. The following methods will increase the share of recoverable oil reserves in the oldest oil-producing Volga region by starting the development of new productive horizons and increase the oil recovery factors for these reservoirs. The methods used in this work will reduce the unit costs of increasing oil production and achieve a cost-effective level of work on wells of this type. The work had its own peculiarities. One of the reasons for the difficulty in interpreting the hydraulic fracturing Minifrac (Meyer software package) was the rather long time of closing fractures in domanic deposits during the registration of pressure drop. In turn, during the minifrac analysis of the Nolte G Time Test graph showed that the fracture did not close, and therefore it is impossible to determine the closing pressure (the pressure gradient of the gap) with reliable accuracy. Note that when interpreting the flow test results, the best match of the experimental and calculated curves is achieved when using the model of a horizontal well operating a homogeneous reservoir. Also, the deterioration of the bottom-hole zone may be associated with a weak opening of the created fractures. Keywords: oil; well; hydraulic fracturing; unconventionals; fracture; core.


Author(s):  
Omid Arjmand ◽  
Jalal Foroozesh ◽  
Ali Reza Roostaee ◽  
Shahaboddin Ayatollahi

A chemical Enhanced Oil Recovery (EOR) process receives more attentions nowadays. Crude Terephthalic Acid (CTA) as a chemical compound is used for flooding here as an alternative to the traditional hydrolyzed polyacryl amide (HPAM). Crude Oil samples from an Iranian oil field were used during the flooding tests. Sand packed models using two different sizes of sand mainly 50 and 100 meshes were employed in this investigation. A comparison between water flooding and CTA flooding as a secondary oil recovery process revealed that the recovery was improved by 10% when CTA was used. The effect of various injection rates and different concentration of chemical solutions on the recovery factor have been checked. Besides, experimental results improved the surfactant behavior of the CTA solution in water. Moreover, at tertiary state, Sodium Dodocyl Sulfate (SDS) as an anionic surfactant was flooded. Experiments showed that recovery factor increased by 5% OOIP while using SDS.


2008 ◽  
Author(s):  
Jyun-Syung Tsau ◽  
Victor Osvaldo Vaca Bustamante ◽  
Don W. Green ◽  
G. Bob Barnett ◽  
Jeff Dale

Sign in / Sign up

Export Citation Format

Share Document