scholarly journals Experience in conducting multi-zone hydraulic fracturing on the oilfield of PJSC «Tatneft»

Author(s):  
L.S. Kuleshova ◽  
◽  
I.G. Fattakhov ◽  
Sh.Kh. Sultanov ◽  
R.U. Rabaev ◽  
...  

The paper presents the possibilities of expanding production opportunities in the oil company PJSC Tatneft. For this purpose, the well No.xxx7g with an inclined pilot borehole was drilled at the Bavlinskoye oil field and oriented core samples were taken to study the lithological cross-section and the geological structure of the subsurface horizons. The horizontal wellbore itself is located in the dankovo-lebedyansky horizon, where multi-zone hydraulic fracturing was carried out through ports with packers there. The following methods will increase the share of recoverable oil reserves in the oldest oil-producing Volga region by starting the development of new productive horizons and increase the oil recovery factors for these reservoirs. The methods used in this work will reduce the unit costs of increasing oil production and achieve a cost-effective level of work on wells of this type. The work had its own peculiarities. One of the reasons for the difficulty in interpreting the hydraulic fracturing Minifrac (Meyer software package) was the rather long time of closing fractures in domanic deposits during the registration of pressure drop. In turn, during the minifrac analysis of the Nolte G Time Test graph showed that the fracture did not close, and therefore it is impossible to determine the closing pressure (the pressure gradient of the gap) with reliable accuracy. Note that when interpreting the flow test results, the best match of the experimental and calculated curves is achieved when using the model of a horizontal well operating a homogeneous reservoir. Also, the deterioration of the bottom-hole zone may be associated with a weak opening of the created fractures. Keywords: oil; well; hydraulic fracturing; unconventionals; fracture; core.

2011 ◽  
Vol 347-353 ◽  
pp. 651-658
Author(s):  
Wei Dong Liu ◽  
Su Nan Cong ◽  
Hong Jun Gu ◽  
Zhen Rong Nie

In China, most of undeveloped oil reserves are low and ultra low permeability reservoirs. The total remaining petroleum reserves of CNPC is about 4.07×107m3, and the low and ultra low permeability reserves is 3.16×107m3, So it is important to reasonable develop the oil reserves to keep the petroleum output stable. Under the low permeability layer condition, it is difficult to inject water to the formation, and the output of oil well is very low. The chemical agent can solve the difficulty of injection water and enhance the oil recovery. The relative permeability experiments shows irreducible oil was reduced by the wettability alteration agents, and the mobile oil saturation increased, which enlarging the range of the two phases co-flowing and enhancing oil recovery. As a result with alteration agents, the cross-point relative permeability moves to right, and the core converts to water-wet. In daqing oil field test, the water injection pressure is reduced by 15%, and the term of validity is more than 10 months.


Georesursy ◽  
2020 ◽  
Vol 22 (3) ◽  
pp. 2-11
Author(s):  
Mikhail A. Fomin ◽  
Rashid M. Saitov

The article presents the results of studying the geological structure of the Bazhenov Formation in the Nadym-Ob interfluve of Western Siberia with the aim of predicting the oil content of this black shale stratum. As a result of interpretation of a wide range of well logging represented by electric, radioactive and acoustic logging, with subsequent matching of these results with paleontological definitions of micro- and macrofauna, the distribution of the Salym, Nizhnevartovsky and Tarkosalinsky types of sections of the Bazhenov Formation was clarified, transitional areas between them were identified. It has been established that the Tarkosalinsky type is more widespread in the western direction than was shown earlier and is also distinguished in the Vengayakhinskaya, Yaraynerskaya and other areas. The Nizhnevartovsky type, on the contrary, has a narrower distribution and stands out directly within the same name arc and to the south by the Variegasky-Tagrinsky megahigh. On the basis of geological, geochemical, geophysical criteria and the results of an inflow test in deep wells, a map of the oil potential prospects of the “classical” sections of the Bazhenov Formation has been compiled. Regional prerequisites (high catagenesis of organic matter, significant modern concentrations of organic carbon, etc.) for the discovery of industrial accumulations of oil in the Bazhenov Formation in the southern regions of the Yamalo-Nenets Autonomous Area are identified. The results of the test for the inflow of the Bazhenov Formation in this area in the 70–90s XX century were analyzed; repeated, interval testing of these deposits using modern methods of stimulation of the inflow is recommended. The necessity of laboratory lithological, petrophysical, geochemical study of the core of the Bazhenov Formation in the southern part of the Yamalo-Nenets Autonomous Area is substantiated with the aim of determining its lithological composition, identifying oil source and oil productive intervals, studying the reservoir structure and the nature of saturation of its void space, developing recommendations for calculating oil reserves and creating technology for its cost-effective production.


2021 ◽  
Author(s):  
Ivan Krasnov ◽  
Oleg Butorin ◽  
Igor Sabanchin ◽  
Vasiliy Kim ◽  
Sergey Zimin ◽  
...  

Abstract With the development of drilling and well completion technologies, multi-staged hydraulic fracturing (MSF) in horizontal wells has established itself as one of the most effective methods for stimulating production in fields with low permeability properties. In Eastern Siberia, this technology is at the pilot project stage. For example, at the Bolshetirskoye field, these works are being carried out to enhance the productivity of horizontal wells by increasing the connectivity of productive layers in a low- and medium- permeable porous-cavernous reservoir. However, different challenges like high permeability heterogeneity and the presence of H2S corrosive gases setting a bar higher for the requirement of the well construction design and well monitoring to achieve the maximum oil recovery factor. At the same time, well and reservoir surveillance of different parameters, which may impact on the efficiency of multi-stage hydraulic fracturing and oil contribution from each hydraulic fracture, remains a challenging and urgent task today. This article discusses the experience of using tracer technology for well monitoring with multi-stage hydraulic fracturing to obtain information on the productivity of each hydraulic fracture separately.


2018 ◽  
Vol 785 ◽  
pp. 159-170
Author(s):  
Vadim Aleksandrov ◽  
Kirill Galinskij ◽  
Andrey Ponomarev ◽  
Vadim Golozubenko ◽  
Yuriy Sivkov

One of the most important aspects in the activities of oil companies in the Western Siberia is to improve the effectiveness of water-flooding as the main method of impact on the formation. This is due to the fact that at the present time reservoirs of a complex structure with difficult to recover reserves prevail among newly introduced development objects, the extraction of which is extremely difficult using a simple method of water injection volumes regulation. First of all, this refers to reservoirs of Jurassic deposits, which are characterized by the most complex geological structure and porosity and permeability properties. A promising direction in improving the water-flooding system at such objects is the use of physical and chemical technologies to enhance the oil recovery of formations, and primarily, referring to the diverter technology. The research objective is to evaluate the effectiveness of using “hard” type diverter compositions to enhance oil recovery of formations. With the help of detailed oil-field analysis and field-geophysical studies, the nature of the development of oil reserves for Jurassic development sites has been assessed.


Author(s):  
V.V. Mukhametshin ◽  

For the conditions of an oil fields group characterized by an insufficiently high degree of oil reserves recovery, an algorithm for objects identifying using parameters characterizing the objects’ geological structure and having a predominant effect on the oil recovery factor is proposed. The proposed algorithm allows us to substantiate and use the analogy method to improve the oil production facilities management efficiency by targeted selection of the information about the objects and processes occurring in them, removing uncertainties in low density conditions, the emergence of real-time decision-making capabilities, determination of optimal ways of current problems solving, reducing the probability of erroneous decisions making, justifying the trend towards the goals achieving.


2020 ◽  
Vol 17 (34) ◽  
pp. 892-904
Author(s):  
Zinon A KUANGALIEV ◽  
Gulsin S DOSKASIYEVA ◽  
Altynbek S MARDANOV

The main part of Russia's hard-to-recover reserves is 73% for low-grade and carbonate reservoirs, 12% for high-viscosity oil, about 15% of extensive sub-gas zones of oil and gas deposits and 7% of reservoirs lying at great depths. The development of such stocks with the usage of traditional technologies is economically inefficient. It requires the application of new technologies for their development and fundamentally new approaches to design, taking into account the features of extraction of hard-to-extract reserves (HtER). The purpose of this research is to find ways to improve the performance of low-permeability reservoirs. To accomplish this task, the Novobogatinsk South-Eastern Oil Field has been taken as an example and described. The necessary properties of production facilities in the field are highlighted, along with economic feasibility and technological efficiency. The reserves involved in the development are determined and, thanks to the knowledge of the geological oil reserves of the deposits, the potential oil recovery factor is calculated with the existing development technology. As a result of the research, development options were worked out with the results of the calculation of design indicators for the field as a whole. The comparison of oil recovery schedules and ORI, as well as the layout of wells, have been presented. As a result of the study, a description of 3 options for the development of design indicators for the field as a whole is given. The figures show oil production graphs, as well as location patterns. The authors of the study conclude which of the recommended development options can help extract maximum oil reserves.


Georesursy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 119-122
Author(s):  
Evgeny V. Lozin

The article formulates the main conclusions about the development of a large Shkapovsky oil field with an emphasis on the results of the development of the main objects – horizons DI and DIV of the terrigenous Devonian. The field was commissioned following the neighboring Tuimazinsky and Serafimovsky fields, taking into account the experience of a scientifically organized system for the development of these large platform oil fields in the Volga-Ural oil and gas region. It is shown that this experience was not taken into account much, especially in relation to the unsecured needs of oil production with capital construction, material and technical supply and social facilities. The potential of the field was realized in 18 years. Intra-contour and focal flooding, production technologies using electric centrifugal pumps (ESP), chemicalization of oil extraction processes, primary collection and transportation of products, oil, gas and water treatment technologies, etc., accelerated the development. Shkapov engineers and scientists own a number of innovations: realizing high development rates, means of preventing and eliminating salt-paraffin deposits, the introduction of double-barrel drilling, the development of high-performance ESPs, separate development of facilities, etc. At the same time, tasks were solved on eliminating ecological imbalance in the bowels and the environment, housing and public works. The current urgent problem of the field’s additional development is the activation of the production of residual oil reserves from oil and watered zones drilled with an unreasonably rare grid of wells. The final oil recovery coefficients of the Devonian objects are expected to be high, but, according to the author of the article, could reach CU 0.6.


2018 ◽  
Vol 785 ◽  
pp. 94-100
Author(s):  
Vadim Aleksandrov ◽  
Marsel Kadyrov ◽  
Andrey Ponomarev ◽  
Denis Drugov ◽  
Irina Bulgakova

The productive formations YUS11 and YUS12 are characterized by a strong lithologic and facies instability. The article shows the results of the analysis of the geological and technical interventions efficiency carried out on these sediments and defines their genetic dependence on the specific features of geological structure. The research objective is to analyze the geological structure of productive deposits, identify facies complexes and assess the effectiveness of geological and technical interventions. With the help of geological-field analysis, a quantitative evaluation of the technological effect obtained during the hydraulic fracturing of well formations, the repair and insulation works and a whole range of measures on intensification of inflow was carried out.


2020 ◽  
pp. 31-43
Author(s):  
T. K. Apasov ◽  
G. T. Apasov ◽  
E. E. Levitina ◽  
E. I. Mamchistova ◽  
N. V. Nazarova ◽  
...  

Despite the current political and economic situation in Russia, mining in small oil fields is important and topical issue. We have conducted a geological and field analysis of the development of one of such small oil fields from setting into operation to shut down and have identified the reasons for the low production of oil reserves and the failure to achieve the design oil recovery factor. At the same time, the field has sufficient reserves of recoverable reserves, and there is an available transport infrastructure, which proves the necessity to consider rerun it for the development. For this purpose, geological and technical actions have been developed and are being proposed for implementation to improve the efficiency of field development. These actions envisage implementation in two stages: the first with minimal costs and the second with higher costs. At the first stage, at the existing reservoir pressure, we recommend to perform forced fluid withdrawals with an increase in depression on the reservoir. At the second stage, we offer actions at a higher cost, such as hydraulic fracturing, sidetracking. As a result of the analysis, actions have been developed to increase selection from initial recoverable reserves and increase the economic efficiency when the field is rerun.


2018 ◽  
Vol 69 (6) ◽  
pp. 1498-1500
Author(s):  
Lacramioara Olarasu ◽  
Maria Stoicescu ◽  
Ion Malureanu ◽  
Ion Onutu

In the oil industry, crude oil emulsions appear very frequently in almost all activities, starting with drilling and continuing with completion, production, transportation and processing. They are usually formed naturally or during oil production and their presence can have a strong impact on oil production and facilities. In this paper we addressed the problem of oil emulsions present in a reservoir with unfavorable flow properties. It is known that the presence of emulsions in a reservoir can influence both flow capacity and the quality of its crude oil, especially when they are associated with porous medium�s low values of permeability. Considering this, we have introduced a new procedure for selecting a special fluid of fracture. This fluid has two main roles: to create new flow paths from the reservoir rock to wells; to produce emulsion breaking of emulsified oil from pore of rocks. Best fracturing fluid performance was determined by laboratory tests. Selected fluid was then used to stimulate an oil well located on an oil field from Romania. In the final section of this paper,we are presenting a short analysis of the efficiency of the operation of hydraulic fracturing stimulation probe associated with the crude oil emulsion breaking process.


Sign in / Sign up

Export Citation Format

Share Document