Development of a Virtual Flowmeter as an Enhanced Alternative for Field Production Monitoring

2021 ◽  
Author(s):  
Gabriela Chaves ◽  
Hamidreza Karami ◽  
Danielle Monteiro ◽  
Virgilio José Martins Ferreira

Abstract Flowrate is a valuable information for the oil and gas industry. High accuracy on flowrate estimation enhances production operations to control and manage the production. Recognized as a cost-efficient solution, the VFM (virtual flowmeter) is a mathematical-based technology designed to estimate the flowrates using available field instrumentation. The VFM approach developed in this work combines black-box simulations with mixed-integer linear programming (MILP) problem to obtain the flowrates dismissing the tuning process. The methodology included a set of multiphase flow correlations, and the MILP was developed to estimate the flowrate and designate the best fit model. We evaluated the proposed VFM against 649 well test data. The methodology presented 4.1% average percentage error (APE) for percentile 25% and 13.5% APE for percentile 50%. We developed a VFM technology to be used in scenarios with a lack of data, and we believe that our tuning-free method can contribute to the future of VFM technologies.

2021 ◽  
Author(s):  
Jamie Dorey ◽  
Georgy Rassadkin ◽  
Douglas Ridgway

Abstract The field experience in the continental US suggests that approximately 33% of plug and abandonment operations are non-routine, and 5% require re-entry (Greer C.R., 2018). In some scenarios, the most cost-efficient option for the intervention is drilling an intercept well to re-enter the target well or multiple wells externally using advanced survey management and magnetic ranging techniques. This paper presents the methods applied of relief well methodologies from the planning to execution of a complex multiple-well abandonment project. Improvements in Active Magnetic Ranging sensor design and applications have improved the availability of highly precise tools for the purpose of locating and intercepting wellbores where access is not possible. These instruments were commonplace on relief well interventions, however, have found a new application in solving one of the major issues facing the oil and gas industry. Subsurface abandonments are a complex task that requires a robust methodology. In this paper, we describe the techniques that have been built upon the best practices from industry experience (ISCWSA WISC eBook). This paper also illustrates how the combination of advanced survey management, gyro surveying, and magnetic ranging can be used following the best industry practices for fast and cost-efficient non-routine plug and abandonment. Case studies of several abandonment projects are presented showing the various technical challenges which are common on idle and legacy wells. The projects include wells that are currently under the ownership of an operator and orphaned wells that have been insufficiently abandoned and left idle over many decades. The case studies outline how the application of relief well methodologies to the execution of complex sub surface interventions led to the successful outcomes of meeting environmental and government regulations for wellbore abandonment. This includes performing multiple zonal isolations between reservoirs, water zones and preventing oil and gas seepage to the surface. The projects and their outcomes prove economically viable strategies for tackling the growing issue of idle and orphaned wells globally in a fiscally responsible manner. Combining industry best practice methods for relief well drilling, along with the technological advancements in magnetic ranging systems is a solution for one of the largest dilemmas facing the oil and gas industry in relation to idle and orphaned wellbores. These applications allow previously considered impossible abandonments to be completed with a high probability of long-term success in permanent abandonment.


2009 ◽  
Vol 12 (04) ◽  
pp. 630-638 ◽  
Author(s):  
Reidar B. Bratvold ◽  
J. Eric Bickel ◽  
Hans Petter Lohne

Summary An important task that petroleum engineers and geoscientists undertake is to produce decision-relevant information. Some of the most important decisions we make concern what type and what quality of information to produce. When decisions are fraught with geologic and market uncertainties, this information gathering may such forms as seismic surveys, core and well test analyses, reservoir simulations, market analyses, and price forecasts--which the industry spends billions of US dollars each year. Yet, considerably less time and resources are expended on assessing the profitability or value of this information. Why is that? This paper addresses how to make value-of-information (VOI) analysis more accessible and useful by discussing its past, present, and future. On the basis of a survey of SPE publications, we provide an overview of the use of VOI in the oil and gas industry, focusing on how the analysis was carried out and for which types of decisions VOI analysis has been performed. We highlight areas in which VOI methods have been used successfully and identify important challenges. We then identify and discuss the possible causes for the limited use of VOI methods and suggest ways to increase the use of this powerful analysis tool. Introduction One of the most useful features of decision analysis is its ability to distinguish between constructive and wasteful information gathering. VOI analysis evaluates the benefits of collecting additional information before making a decision. Such information gathering may be worthwhile if it holds the possibility of changing the decision that would be made without further information. VOI attributes no value to "uncertainty reduction" or "increased confidence" per se. Rather, value is added by enabling the decision maker (DM) to better "tune" his/her choice to the underlying uncertainty. Thus, information value is forever an entanglement of uncertainty and decision making; one cannot value information outside of a particular decision context.


2021 ◽  
Vol 54 (2F) ◽  
pp. 48-61
Author(s):  
Walaa Khyrie ◽  
Ayad Alrazzaq

The oil and gas industry, wellbore instability plays an important role in financial losses and stops the operations while the drilling which leads to extra time known as non-productive time. In this work, a comprehensive study was carried out to realize the nature of the instability problems of the wellbore in Rumaila oilfield to improve the well design. The study goal is to develop a geomechanical model in one dimension by utilizing Schlumberger Techlog (Version 2015) software. Open hole wireline measurements were needed to develop the model. The model calibrating and validating with core laboratory tests (triaxial test), well test (Mini-frac test), repeated formation test. Mohr-Coulomb, Mogi-Coulomb, and Modified Lade are the three failure criteria which utilized to analyze the borehole breakouts and to determine the minimum mud weight needed for a stable wellbore wall. For more accuracy of the geomechanical model, the predicted profile of the borehole instability is compared with the actual failure of the borehole that is recorded by caliper log. The results of the analysis showed that the Mogi-Coulomb criteria are closer to the true well failure compared with the other two criteria and considered as the better criteria in predicting the rock failure in the Rumaila oilfield. The wellbore instability analysis revealed that the vertical and low deviated wells (less than 40º) is safer and more stable. While, the horizontal and directional wells should be drilled longitudinally to the direction of the minimum horizontal stresses at a range between 140º–150º North West-South East and the mud weight recommended is increased to 10.5 ppg to avoid most of instabilities problems. The results contribute in development plan of the wells nearby the studied area and decreasing NPT and cost.


2021 ◽  
Author(s):  
Jose Olavo de Andrada Ignacio de Oliveira ◽  
Pedro Lemos Tavares ◽  
Victor Costa da Silva ◽  
Ivan Noville Rocha Correa Lima ◽  
João Francisco Fleck Heck Britto ◽  
...  

Abstract The purpose of this paper is to present a general overview of the Buzios field development plan, projects’ features, and main achievements so far. The development plan adopted a strategy to pursue the balance between acceleration and cash flow optimization, to maximize the return on the huge investment on the block acquisition, and the risk management related to developing several Greenfield Projects simultaneously. To reduce reservoir uncertainties, a comprehensive data acquisition plan was crafted and implemented considering: (a) seismic acquisition, (b) drilling, logging and testing several exploratory and appraisal wells, (c) massive rock and fluid data sampling along the reservoirs, (d) execution of one Extended Well Test and three Early Production Systems. Additionally, the basic design of wells, subsea systems and Floating Production Storage and Offloading ("FPSO") provided flexibility to cover remaining uncertainties yet present in the Transfer of Rights ("ToR") scope, which allows up to 3,150 billion barrels of oil equivalent ("boe") to be produced. This led to technological challenges that needed to be addressed during project planning. We believe that the innovative solutions applied enhanced currently available technologies and delivered an important legacy to the offshore oil and gas industry. Finally, the results obtained so far, with the ramp-up of Buzios projects 1, 2, 3, and 4 provide evidence of the successful adopted strategy and reinforce the decision of deployment of a fifth FPSO under the scope of the ToR contract. The strong results of the asset led to the acquisition of 90% of the Transfer of Rights Surplus ("ToR+"), together with CNOOC Petroleum Brasil Ltda. (5%) and CNODC Brasil Petróleo e Gás Ltda. (5%), which now paves the way for a second wave of development, including the deployment of up to seven additional FPSOs.


2009 ◽  
Vol 23 (08) ◽  
pp. 1027-1051 ◽  
Author(s):  
M. ANDRECUT

The deconvolution method has received much attention recently, and is becoming one of the major tools for well test and production data analysis in oil and gas industry. Here, we present a new deconvolution approach, which we believe is relevant and can be an important addition to the existing efforts made in this field. We show that the solution of the deconvolution problem can be successfully represented as a linear combination of non-orthogonal exponential functions. Also, we present three deconvolution algorithms. The first two algorithms are based on regularization concepts borrowed from the well-known Tikhonov and Krylov methods, while the third algorithm is based on the stochastic Monte Carlo method.


2020 ◽  
Vol 78 (7) ◽  
pp. 861-868
Author(s):  
Casper Wassink ◽  
Marc Grenier ◽  
Oliver Roy ◽  
Neil Pearson

2004 ◽  
pp. 51-69 ◽  
Author(s):  
E. Sharipova ◽  
I. Tcherkashin

Federal tax revenues from the main sectors of the Russian economy after the 1998 crisis are examined in the article. Authors present the structure of revenues from these sectors by main taxes for 1999-2003 and prospects for 2004. Emphasis is given to an increasing dependence of budget on revenues from oil and gas industries. The share of proceeds from these sectors has reached 1/3 of total federal revenues. To explain this fact world oil prices dynamics and changes in tax legislation in Russia are considered. Empirical results show strong dependence of budget revenues on oil prices. The analysis of changes in tax legislation in oil and gas industry shows that the government has managed to redistribute resource rent in favor of the state.


Sign in / Sign up

Export Citation Format

Share Document