Designing Tools To Improve Rod Pumping Performance In Hostile Production Conditions

2021 ◽  
Author(s):  
Zhijun Fu ◽  
kuanliang Zhu ◽  
Lei Wang ◽  
Jingjing Xu ◽  
Qian Wang ◽  
...  

Abstract In oil and gas industry, it is inevitable that the developed reserve will gradually become exhausted. Under such circumstance, in order to stabilize oil production and meet increasing energy demand, we have no choice but to improve oil recovery from matured field as much as possible, since finding new large reservoir is quite hard in the future. For Jidong Oilfield in China, a lot of method can be used for improving oil production, one of which is deep pumping method by increasing pump setting depth, especially for depleted reservoir. Deep pumping method can be helpful to lower bottom hole pressure and enlarge drawdown pressure between producing layer and downhole. Not only can this method generate more power to displace oil from reservoir to well and subsequently increase oil drainage area, leading to higher oil recovery, but also can boost pump fillage and finally obtain high production efficiency. Even though, this method still brings many disadvantages. In Jidong Oilfield, we sometimes set the 1.5in pump at over 3000m depth (in this paper, all well related are rod pumping wells), where varied problems happened as followed:

2017 ◽  
Vol 57 (2) ◽  
pp. 413
Author(s):  
Christopher Consoli ◽  
Alex Zapantis ◽  
Peter Grubnic ◽  
Lawrence Irlam

In 1972, carbon dioxide (CO2) began to be captured from natural gas processing plants in West Texas and transported via pipeline for enhanced oil recovery (EOR) to oil fields also in Texas. This marked the beginning of carbon capture and storage (CCS) using anthropogenic CO2. Today, there are 22 such large-scale CCS facilities in operation or under construction around the world. These 22 facilities span a wide range of capture technologies and source feedstock as well as a variety of geologic formations and terrains. Seventeen of the facilities capture CO2 primarily for EOR. However, there are also several significant-scale CCS projects using dedicated geological storage options. This paper presents a collation and summary of these projects. Moving forward, if international climate targets and aspirations are to be achieved, CCS will increasingly need to be applied to all high emission industries. In addition to climate change objectives, the fundamentals of energy demand and fossil fuel supply strongly suggests that CCS deployment will need to be rapid and global. The oil and gas sector would be expected to be part of this deployment. Indeed, the oil and gas industry has led the deployment of CCS and this paper explores the future of CCS in this industry.


2021 ◽  
Vol 73 (01) ◽  
pp. 12-13
Author(s):  
Manas Pathak ◽  
Tonya Cosby ◽  
Robert K. Perrons

Artificial intelligence (AI) has captivated the imagination of science-fiction movie audiences for many years and has been used in the upstream oil and gas industry for more than a decade (Mohaghegh 2005, 2011). But few industries evolve more quickly than those from Silicon Valley, and it accordingly follows that the technology has grown and changed considerably since this discussion began. The oil and gas industry, therefore, is at a point where it would be prudent to take stock of what has been achieved with AI in the sector, to provide a sober assessment of what has delivered value and what has not among the myriad implementations made so far, and to figure out how best to leverage this technology in the future in light of these learnings. When one looks at the long arc of AI in the oil and gas industry, a few important truths emerge. First among these is the fact that not all AI is the same. There is a spectrum of technological sophistication. Hollywood and the media have always been fascinated by the idea of artificial superintelligence and general intelligence systems capable of mimicking the actions and behaviors of real people. Those kinds of systems would have the ability to learn, perceive, understand, and function in human-like ways (Joshi 2019). As alluring as these types of AI are, however, they bear little resemblance to what actually has been delivered to the upstream industry. Instead, we mostly have seen much less ambitious “narrow AI” applications that very capably handle a specific task, such as quickly digesting thousands of pages of historical reports (Kimbleton and Matson 2018), detecting potential failures in progressive cavity pumps (Jacobs 2018), predicting oil and gas exports (Windarto et al. 2017), offering improvements for reservoir models (Mohaghegh 2011), or estimating oil-recovery factors (Mahmoud et al. 2019). But let’s face it: As impressive and commendable as these applications have been, they fall far short of the ambitious vision of highly autonomous systems that are capable of thinking about things outside of the narrow range of tasks explicitly handed to them. What is more, many of these narrow AI applications have tended to be modified versions of fairly generic solutions that were originally designed for other industries and that were then usefully extended to the oil and gas industry with a modest amount of tailoring. In other words, relatively little AI has been occurring in a way that had the oil and gas sector in mind from the outset. The second important truth is that human judgment still matters. What some technology vendors have referred to as “augmented intelligence” (Kimbleton and Matson 2018), whereby AI supplements human judgment rather than sup-plants it, is not merely an alternative way of approaching AI; rather, it is coming into focus that this is probably the most sensible way forward for this technology.


2021 ◽  
Vol 11 ◽  
pp. 55-61
Author(s):  
Thuong San Ngo

Oil and gas is a non-renewable resource that plays an important role in the economy. It is forecasted that by the middle of the twenty-first century, oil and gas still holds the leading position in primary energy balance in many countries. The world energy consumption in 2020 was over 4.1 billion tons of oil and 3,853 billion m3 of gas [1]. During 60 years of construction and development, Vietnam's oil and gas industry has made important contributions to the economy, especially helping the country overcome the energy crisis and budget deficit in the 1990s. By the end of 2020, the total production amounted to over 424 million tons of oil and condensate, and over 160 billion m3 of gas; at one time even contributing nearly 30% of the State budget and 22 - 25% of the GDP. Especially, the formation of important coastal petroleum industrial zones and oil and gas projects on the continental shelf have contributed to ensuring national sovereignty and national security. The demand for oil and gas in the energy balance increases rapidly with the speed of socio-economic development. It is forecasted that in the near future, Vietnam will no longer be self-sufficient in supply and must import completely to meet the country's energy demand. In parallel with proactively implementing urgent technical and technological solutions, Vietnam's oil and gas industry needs mechanisms to increase reserves and maintain oil and gas output, as well as prepare the next steps for transition to energy forms with low greenhouse gas emissions and renewable energy.


2020 ◽  
Vol 6 (3) ◽  
Author(s):  
Mark Burghardt ◽  
Gage Hart Zobell

Oil and gas production continues to be an important sector of Utah’s economy. Following a 25% loss in production between 2014 and 2015, Utah’s production continues to slowly rebound. Crude oil production in 2019 appears to be slightly ahead of 2018 production. Monthly production averages slightly over three million barrels, placing Utah among the top ten states in crude oil production. Along with the continuing increase in production, the state’s legal framework governing oil and gas continues to develop. This Article examines recent changes in Utah statutes and regulations along with new case law developments involving the oil and gas industry. In particular, this Article discusses a recent federal bankruptcy decision involving midstream agreements, the revision to a Utah statute that now requires mandatory reporting of unclaimed mineral interests, and recent revisions to Utah’s oil and gas regulations.


2020 ◽  
Vol 8 (1) ◽  
pp. 126-130
Author(s):  
Camila Weisman

The oil and gas industry remains for Russia the most important source of income, a strategic industry. According to official figures of the Ministry of Finance of the Russian Federation, income from the oil and gas sector, according to the results of 2019, is 40% of the total budget of the country. A large volume of crude oil and gas is exported from the country. The tax burden on raw materials reaches up to 60% of the initial cost, which makes oil production at new fields extremely unprofitable. The most important direction for the country is the transition from a strategy for the sale of crude oil products to refined ones, which have an additional cost. The article discusses the features of domestic oil production, analyzes the reasons for overpriced in comparison with competitive raw materials from other oil producing leader countries. The strategy of ensuring the economic security of the industry is noted, the main tools are listed and the mechanisms for ensuring the economic security of petrochemical industry enterprises are presented.


2021 ◽  
Author(s):  
Nayef Alyafei ◽  
Afsha Shaikh ◽  
Mohamed Gharib ◽  
Albertus Retnanto

Abstract Final-year high school students are faced with a difficult decision when selecting their undergraduate major of choice. Often, the decision is made even more difficult by uncertainty about what different majors entail. Petroleum engineering in particular is a discipline that is generally not explored within high school classrooms and therefore students lack understanding about the roles of engineers in the oil and gas industry. To combat this uncertainty, this paper explores the potential of running pre-college project-based learning programs to increase high school students’ interest in and familiarity with pursuing various undergraduate STEM disciplines and careers. More specifically, this paper provides an insight into two case studies of novel STEM education programs, developed to enhance a group of high school students’ understanding of petroleum engineering. The programs were designed to increase students’ interest in learning about the selected petroleum engineering concepts, namely polymer flooding to enhance oil recovery and multiphase fluid flow in porous media, while simultaneously providing an understanding of the current global challenges faced by the oil and gas industry. The program also aimed to engage students in learning and applying fundamental engineering skills to relatable real-world issues. These project goals will help facilitate the desire, commonly seen in recent years, of developing countries to increase their oil and gas production. This program was applied during the Summer Engineering Academy program offered by Texas A&M University at Qatar, which provides an innovative educational space for high school students. The program was conducted with the main objective of allowing the students to understand the basic concepts of petroleum engineering via short lectures as well as laboratory experimentation. Students in Grades 9-11 spent 10 days learning about petroleum engineering applications that integrated science, engineering, and technology where they designed, built, and tested an experimental setup for understanding various processes in petroleum engineering. Students were expected to solve a common problem faced in the petroleum industry. At the end of the program, the students gained an understanding of the issues and recommended unique solutions to these problems in the form of oil-recovery based projects presented to a panel of experts. This program attempted to build bridges between the STEM education pipeline of rapidly developing countries, such as Qatar, and the new demand for talent in the oil and gas sector. The details of this novel program are presented, including the content, preparation, materials used, case studies, and the resulting learning outcomes.


2018 ◽  
Vol 7 (3.21) ◽  
pp. 10
Author(s):  
Wiwiek Mardawiyah Daryanto ◽  
Dety Nurfadilah

Indonesia’s oil and gas industry is the huge contributor to government export revenues and foreign exchange and contributes a substantial amount to state revenue. However, the total of oil production declined around 4,41% per year since 2007, and the sharpest decline was in 2013. This situation gives impact to the performance of oil and gas industry, especially government revenues. Therefore, the purpose of this study is to measure the financial performance of Oil and Gas Industry and to examine the significance differences between the financial performance before and after the decline in oil and gas production. The data were collected from financial report and the period was divided into two periods, before the decline in production (2011 – 2012) and after the decline in production (2014 – 2015). Paired sample t-test and financial ratio analysis (FRA) were used to analyzed the data. The finding shows that the largest oil and gas company in Indonesia is still in good financial condition, although it gained loss. In addition, current ratio and return on equity had significance difference during the period of before and after a decline in oil and gas production. The authors believe that the findings will be helpful for managers who continuously attempt to explore opportunities to provide a higher return. 


Sign in / Sign up

Export Citation Format

Share Document