High-Purity, CO2-Free Hydrogen Generation from Crude Oils in Crushed Rocks Using Microwave Heating

2021 ◽  
Author(s):  
Qingwang Yuan ◽  
Xiangyu Jie ◽  
Bo Ren

Abstract While the demand for hydrocarbon resources has been continuously increasing in the past 150 years, the industry is, however, criticized for carbon dioxide (CO2) emissions and concomitant global warming concerns. The oil and gas industry also face growing pressures in the ongoing energy transition. Generating and producing hydrogen (H2) directly from petroleum reservoirs has the potential to mitigate environmental impacts while revolutionizing the traditional petroleum industry and enabling it to become a clean hydrogen industry. This paper proposes a novel approach to generate high-purity, CO2-free hydrogen from the abundant oil and gas resources in petroleum reservoirs using microwave heating. In this work, laboratory experiments were conducted to validate this scientific proof-of-concept and examine the roles of crushed rocks, catalysts, and water/oil ratio in hydrogen generation from crude oils in a reactor. A maximum of 63% ultimate hydrogen content is obtained in the generated gas mixtures, while the original CO2content in all experiments is negligible (<1%). Catalysts can promote hydrogen generation by accelerating rate and locally enhancing microwave (MW) absorption to create ‘super-hot spots'. Water also participates in reactions, and additional hydrogen is generated through water-gas shift reactions. The water-oil ratio in porous rocks affects the ultimate hydrogen yield. Overall, this research demonstrates the great potential of using MW heating to generate high-purity, CO2-free hydrogen from in situ petroleum reservoirs. Further research and wide application of this technology would potentially transform petroleum reservoirs to hydrogen generators, thus mitigating the environmental impacts of traditional petroleum industry while meeting the increasing demand for clean hydrogen energy. This technology would also benefit the safe transition towards a decarbonized society.

2012 ◽  
Vol 253-255 ◽  
pp. 751-759
Author(s):  
Ay Su ◽  
Hsiu Lu Chiang ◽  
Zhen Ming Huang

High purity hydrogen generated by hydrolysis of sodium borohydride can be used as the fuel of PEM fuel cell and other portable device. As its high hydrogen storage capacity, controllable reaction and mild condition, hydrogen generation by catalytic hydrolysis of chemical hydride, such as sodium borohydride, has been the major focus of researches. On the threshold of the controllable of hydrogen generated by hydrolysis of sodium borohydride, the catalyst for hydrolysis of hydrogen generation (HG) is studied. First, applying chemical plating, Ru/Ni foam catalyst was prepared; then, continuous flow reactor method was used to generate hydrogen. Varied parameters, such as concentrations of NaBH4 and NaOH, flow rate of NaBH4 solution and quantity of catalyst, were inspected in this research. It was found that, the NaBH4 and NaOH concentration at 20wt% and 3wt%, fuel feed to 4 g/min, hydrogen yield of 1.72 L/min, the hydrogen production efficiency as high as 91.2%. The present hydrogen generator was integrated with a 100W PEMFC and the optimum performance of the integrated system was studied. The hydrogen produced from NaBH4 has high purity and humidity; therefore, it can be directly used as the fuel for PEMFCs, which in general require humidified hydrogen. It is found that for cell voltage above 0.6V, the performance of cell using NaBH4 hydrogen is 103.45W, versus 99.9W with cylinder hydrogen.


2016 ◽  
Vol 42 (1) ◽  
pp. 266-270
Author(s):  
A. Kasaeva ◽  
◽  
Z. Bіrіmzhanova ◽  
A. Rysmagambetova ◽  
◽  
...  

2020 ◽  
Vol 58 (3) ◽  
pp. 397-424
Author(s):  
Jesse Salah Ovadia ◽  
Jasper Abembia Ayelazuno ◽  
James Van Alstine

ABSTRACTWith much fanfare, Ghana's Jubilee Oil Field was discovered in 2007 and began producing oil in 2010. In the six coastal districts nearest the offshore fields, expectations of oil-backed development have been raised. However, there is growing concern over what locals perceive to be negative impacts of oil and gas production. Based on field research conducted in 2010 and 2015 in the same communities in each district, this paper presents a longitudinal study of the impacts (real and perceived) of oil and gas production in Ghana. With few identifiable benefits beyond corporate social responsibility projects often disconnected from local development priorities, communities are growing angrier at their loss of livelihoods, increased social ills and dispossession from land and ocean. Assuming that others must be benefiting from the petroleum resources being extracted near their communities, there is growing frustration. High expectations, real and perceived grievances, and increasing social fragmentation threaten to lead to conflict and underdevelopment.


2021 ◽  
Author(s):  
Rune Vikane ◽  
Jon Tømmerås Selvik ◽  
Eirik Bjorheim Abrahamsen

Abstract The 2014 Wood Review is a report reviewing UK offshore oil and gas recovery and its regulation, led by Sir Ian Wood. The report identifies and addresses key challenges in the UK petroleum industry, among them the lack of a strong regulatory body and a decommissioning strategy. The UK petroleum industry is mature, and Norway may benefit from UK's experiences in decommissioning. The article investigates the applicability of the Wood Review recommendations for decommissioning in Norway. The analysis of the recommendations in the Wood Review is carried out by a SWOT-analysis of the general recommendations with a high potential impact on decommissioning as well as the five recommendations specific to decommissioning. The recommendations in the Wood Review were broadly accepted by UK authorities and formed the basis for numerous initiatives aimed at improving policies and practices in UK decommissioning. The key initiatives are presented to illustrate how the Wood Review recommendations has been interpreted. A summary of the key differences between the petroleum industries and the regulatory authorities in Norway and the UK is provided for background. Decommissioning in Norway face similar challenges to those identified in the Wood Review. The analysis indicates that several of the UK initiatives following the recommendations in the Wood Review has the potential of improving decommissioning in Norway. Differences in regulatory regimes between the regions may complicate the implementation of some of the initiatives following the Wood Review in Norway. In most cases only minor changes to regulations and/or practices are required. Recent UK initiatives with a high impact on decommissioning include increased focus on sharing of information and lessons learned, increased collaboration, the development of a decommissioning strategy, benchmarking of decommissioning cost estimates for all projects and the development and publishing of annual UK decommissioning cost estimates. There are indications that the Norwegian Petroleum Directorate (NPD) and the Norwegian Ministry of Petroleum and Energy (MPE) are falling behind their UK counterparts in key areas. Norway has limited experience with decommissioning, and scrupulous analysis of lessons learned in other regions is essential. Decommissioning of Norwegian offshore infrastructure is a major undertaking and even minor improvements may have a substantial impact on personnel risk, risk to the environment or the total decommissioning expenditure. The Norwegian regulatory regime has been an integral part of the Norwegian petroleum industry's success in previous decades, and changes to the regime require careful deliberation. The recent implementation of initiatives aimed at improving decommissioning regulations and practices in the UK represents a unique learning opportunity for Norwegian authorities. The analysis suggest that Norway may benefit from adopting some of the UK initiatives following the Wood Review recommendations.


1986 ◽  
Vol 39 (11) ◽  
pp. 1687-1696 ◽  
Author(s):  
Jean-Claude Roegiers

The petroleum industry offers a broad spectrum of problems that falls within the domain of expertise of mechanical engineers. These problems range from the design of well production equipment to the evaluation of formation responses to production and stimulation. This paper briefly describes various aspects and related difficulties with which the oil industry has to deal, from the time the well is spudded until the field is abandoned. It attempts to delineate the problems, to outline the approaches presently used, and to discuss areas where additional research is needed. Areas of current research activity also are described; whenever appropriate, typical or pertinent case histories are used to illustrate a point.


2014 ◽  
Vol 67 (4) ◽  
pp. 373-378 ◽  
Author(s):  
Carlos Mouallem ◽  
Wilson Trigueiro de Sousa ◽  
Ivo Eyer Cabral ◽  
Adilson Curi

Hydraulic fracturing emerges currently, all over the world, as one of the more strategic techniques used by companies in the oil exploitation sector. This technique is characterized by its high productivity and profit in relation to conventional methods of hydrocarbon exploitation. However, in many countries, as is the case of Brazil, there are several divergences considering the employment of this methodology. Many renowned researchers attest that there are several irreversible environmental impacts generated by the use of this methodology. Among the main environmental impacts are the risk of groundwater level contamination, the risk of surface subsidence, and the risk of the environment contamination with fluids used in the process of the oil and gas extraction.


2019 ◽  
Vol 118 ◽  
pp. 03048
Author(s):  
Changchun Li ◽  
Yuxin Wu

Hydrogen generation from rapid hydrolysis of aluminum in sodium fluoride solution was investigated through a hydrolysis experiment. Rapid and instant hydrogen yield were observed using sodium fluoride as additive. The experimental results demonstrate that the increase of temperature and the amount of additives in a certain range will boost the hydrogen production. The amount of additives outside the range only has an effect on the rapid hydrolysis of the aluminum during the initial stage, but the total amount of hydrogen produced doesn’t increased significantly. Theoretical analysis of the effects of the mixing ratio and the temperature on the hydrogen production rates were performed using the shrinking core model and the kinetic model. The shrinking core model parameter a and k indicate the film change degree of porosity and thickness and the effect of time on the diffusion coefficient. the kinetic model is verified and the activation energy confirming hydrogen yield control by a molecular diffusion process. Correspondingly, mechanisms of Al corrosion in NaF solutions under low and high alkalinity were proposed, respectively.


2016 ◽  
Vol 4 (2) ◽  
pp. 28 ◽  
Author(s):  
Sunmonu Ayobami ◽  
Adabanija Adedapo ◽  
Adagunodo Aanuoluwa ◽  
Adeniji Ayokunnu

Hydrocarbon resources have become the most essential commodity contributing to any nation’s growth and development in the recent years. For the past decades now, the quest for hydrocarbon resources has been increasing in an arithmetic rate that its supply can no longer meets the demand for its consumption today. In petroleum industry, seismic and well log analyses play a vital role in oil and gas exploration and formation evaluation. This study is aimed to effectively characterize the reservoirs and analyze the by-passed pay in Philus Field, Niger-Delta, Nigeria in order to look into the economic viability and profitability of the volume of oil in the identified reservoir(s). The faults in the study area trend in NW-SE direction and dip towards the south. Seven reservoirs were mapped on Philus field. A discovery trap and a by-passed (new prospect) trap were mapped out on the field. The petrophysical analysis showed that porosity of Philus field was 0.24. The volumetric analysis showed that the Stock Tank Original Oil in Place of discovery trap (Philus field) ranged from 1.6 to 43.1 Mbbl while that of new prospect trap ranged from 18.1 to 211.3 Mbbl. It is recommended that the oil reserve of Philus field needs to be recalculated.


Sign in / Sign up

Export Citation Format

Share Document