Design, Development and Installation of Modular Inflow Control Technology

2021 ◽  
Author(s):  
Valeria Erives ◽  
Mike Plooy ◽  
Vivek Agnihotri ◽  
Ashutosh Dikshit ◽  
Amrendra Kumar ◽  
...  

Abstract Integrating a flow control sliding sleeve into a sand screen can provide multiple advantages to the user in controlling the production inflow. Although it does come with an increased completion cost as well as the number of interventions required when its time to operate those valves. Especially in long horizontal wells, this can become time consuming and inefficient. A few technologies exist to address this issue but they are either too complex or require specialized rigging equipment at the wellsite, which is not desirable. As described herein, a unique, fit for application modular sliding sleeve sand screen assembly with dissolvable plugs was developed that eliminates wash-pipe and allows flow from several screens controlled via a single sliding sleeve. Design and field installation of these modular screens is presented in this paper. The new modular sand-screen consisted of an upper joint, modular middle joint, modular middle joint with ICD/SSD (w/ optional dissolvable plugs), and a lower joint, and novel field installable flow couplings between them. The design allowed for any number of non-ICD/SSD screen joints to be connected to any number of ICD/SSD joints in any order. A computer-aided design was followed to achieve all the operational/mechanical requirements, Computational fluid dynamics (CFD) was used to optimize the flow performance characteristics. Prototypes were manufactured and tested prior to conducting successful field trials. The conceptualization and design stage provided several challenges as different ways to achieving modularity and interconnectivity were explored (such as internal to the tubing or external, sealing methods, ease of installation, reliability). Several design calculations were performed to select the most robust design and most suitable solution for the application. Design for manufacturing review, design calculations and CFD analysis helped with the selection of a concept that maximized the flow rates and kept flow velocity under the limit through the critical sections. Dissolvable plugs were used to temporarily close the SSD ports for wash-pipe free installation. The sealing mechanism of plugs was confirmed by differential pressure test up to 500 psi. A valuable, new downhole modular screen design for use w/ICD/SSD providing intervention-less completions without involving complex/expensive technologies is developed, tested and installed. A new, field-proven, modular sand control technology allowing flow from several non-ICD/SSD screen joints to drain into a single ICD/SSD joint, thus eliminating the need to run ICD/SSD on every screen joint in an unconsolidated formation is developed. Dissolvable plug integrated into sliding sleeve ports allowed wash pipe free installation. The technology allows increasing/decreasing the total drainage length at the well site per zonal requirements, thereby reducing costs and improving performance.

Author(s):  
Т. В. Самодурова ◽  
Н. Ю. Алимова ◽  
О. А. Волокитина ◽  
О. В. Гладышева

Постановка задачи. Для получения оптимальных проектных решений, удовлетворяющих условиям безопасности движения в сложных погодных условиях, необходимо сравнение вариантов автомобильных дорог по условиям снегонезаносимости. Такие расчеты должны стать составной частью системы автоматизированного проектирования САПР-АД. Результаты. Предложен системный поход к решению задачи, определен перечень информации, необходимой для проведения расчетов. Выполнен анализ результатов исследований по снегозаносимости дорог, проводимых в России и за рубежом. Предложены расчетные схемы и модели для оценки вариантов продольного профиля и земляного полотна автомобильной дороги по снегозаносимости. Предложены решения для оценки вариантов плана трассы с использованием карт с расчетными параметрами метелей. Выводы. Реализация предложенной методики проведения расчетов позволит на стадии проектирования оценить варианты автомобильной дороги по условиям снегозаносимости. Statement of the problem. In order to obtain optimal design solutions that meet the conditions of safety traffic in difficult weather conditions, it is necessary to compare the options of highways according to the snow tolerance conditions. Such calculations should become an integral part of the CAD-AD computer-aided design system. Results. A systematic approach to solving the problem is set forth, a list of information necessary for calculations is identified. The results analysis of studies on the snow-bearing capacity of roads conducted in Russia and abroad is carried out. Calculation schemes and models are suggested to evaluate options for the longitudinal profile and the roadbed for the snow-bearing capacity. Solutions for evaluating variants of the route plan using maps with calculated parameters of snowstorms are proposed. Conclusions. The implementation of the proposed calculation methodology will make it possible at the design stage to evaluate the options of the highway according to the conditions of the snow-bearing capacity.


1970 ◽  
Vol 1 (1) ◽  
Author(s):  
Y. M. A. Khalifa ◽  
D. H. Horrocks

An investigation into the application of Genetic Algorithms (GA) for the design of electronic analog circuits is presented in this paper. In this paper an investigation of the use of genetic algorithms into the problem of analog circuits design is presented. In a single design stage, circuits are produced that satisfy specific frequency response specifications using circuit structures that are unrestricted and with component values that are chosen from a set of preferred values. The extra degrees of freedom resulting from unbounded circuit structures create a huge search space. It is shown in this paper that Genetic Algorithms can be successfully used to search this space. The application chosen is a LC all pass ladder filter circuit design.Key Words: Computer-Aided Design, Analog Circuits, Artificial Intelligence.


2021 ◽  
pp. 1-14
Author(s):  
Ashutosh Dikshit ◽  
Amrendra Kumar ◽  
Glenn Woiceshyn

Summary Interest is high in a method to reliably run single-trip completions without involving complex/expensive technologies (Robertson et al. 2019). The reward for such a design would be reduced rig time, safety risks, and completion costs. As described herein, a unique pressure-activated sliding side door (PSSD) valve was developed and field tested to open without intervention after completion is circulated to total depth (TD) and a liner hanger and openhole isolation packers are set. A field-provensliding-sleeve door (SSD) valve that required shifting via a shifting tool run on coiled tubing, slickline (SL), or wireline was upgraded to open automatically after relieving tubing pressure once packers (and/or a liner hanger) are set. This PSSD technology, which is integrable to almost any type of sand control screen, is equipped with a backup contingency should the primary mechanism fail to open. Once opened, the installed PSSDs can be shifted mechanically with unlimited frequency. The two- or three-position valve can be integrated with inflow control devices (ICDs) (includes autonomous ICDs/autonomous inflow control valves) and allows mechanical shifting at any time after installation to close, stimulate or adjust ICD settings. After a computer-aided design stage to achieve all the operational/mechanical requirements, prototypes were built and tested, followed by field installations. The design stage provided some challenges even though the pressure-activation feature was being added to a mature/proven SSD technology. Prototype testing in a full-scale vertical test well proved valuable because it revealed failure modes that could not have appeared in the smaller-scale laboratory test facilities. Lessons learned from the first field trial helped improve onsite handling procedures. The production logging tool run on first installation confirmed the PSSDs with ICDs opened as designed. The second field installation involved a different size and configuration, in which PSSDs with ICDs performed as designed. The unique two- or three-position PSSD accommodates any type of sand control or debris screen and any type of ICD for production/injection. The PSSD allows the flexibility to change ICD size easily at the wellsite. Therefore, this technology can be used in carbonate as well as sandstone wells. Wells that normally could not justify the expense of existing single-trip completion technologies can now benefit from the cost savings of single-trip completions, including ones that require ICD and stimulation options.


2021 ◽  
pp. 1-12
Author(s):  
Ashutosh Dikshit ◽  
Vivek Agnihotri ◽  
Mike Plooy ◽  
Amrendra Kumar ◽  
Seymur Gurbanov ◽  
...  

Summary Integrating a flow control sliding sleeve into a sand screen can provide multiple advantages to the user in controlling the production inflow, but it comes with an increased completion cost as well as an increase in the number of interventions required when it is time to operate those valves. Especially in long horizontal wells, this can become time-consuming and inefficient. A few technologies exist to address this issue, but they either are too complex or require specialized rigging equipment at the wellsite, which is not desirable. As described herein, a unique, fit-for-application modular sliding sleeve sand screen assembly with dissolvable plugs was developed that eliminates the need for washpipe during run-in-hole (RIH) and allows flow control from several screens by means of a single sliding sleeve door (SSD), thereby also optimizing the subsequent intervention operations by reducing the number of SSDs in the well. The design and field installation of these modular screens is presented in this paper. The new modular sand screen consisted of an upper joint, modular middle joint, modular middle joint with an inflow control device (ICD) integrated into an SSD (with optional dissolvable plugs), a lower joint, and novel field-installable flow couplings between them. The design allows for any number of non-ICD/SSD screen joints to be connected to any number of ICD/SSD joints in any order. A computer-aided design was followed to achieve all the operational and mechanical requirements. Computational fluid dynamics (CFD) was used to optimize the flow performance characteristics. Prototypes were manufactured and tested before conducting successful field trials. The design process, development, and field installation results are presented herein.


2014 ◽  
Vol 539 ◽  
pp. 42-46
Author(s):  
Hong Tao Guo ◽  
Wei Guo Zhang

Article use Visual LISP development tools and DCL dialog technology, which implements the standard straight teeth, a two-dimensional cylindrical gear parametric drawing on AutoCAD platform, with easy to operate and improve design efficiency. We achieved that using the dialog box design input parameters, and gear parts of the design calculations, parameters proofreading and all kinds of gear design drawing different structures by programming. The output is fully automated computer-aided design system. The results show that the design of the system significantly improves the efficiency of the part design.


2017 ◽  
Vol 37 (1) ◽  
pp. 71-83 ◽  
Author(s):  
Andre Diogo Moscheto ◽  
Carlos Cziulik ◽  
Simão Marcon Junior ◽  
Marcos Sulevis

Purpose The purpose of this paper is to provide a new approach involving guidelines and supporting techniques that guarantees all needed space for appropriate product maintenance. Design/methodology/approach The approach is based on two major areas: field survey to understand how maintainability parameter is applied and converge theory and practice into a systematic space claim method using computer-aided design (CAD) systems to assure proper maintenance procedures at design stages. Findings Case studies from a truck industry conducted following the proposed approach contrast the savings that can be achieved by using a proper space claim for aftermarket needs against an unsuitable level of participation by maintenance personnel during the design development. Research limitations/implications This approach is highly dependent on maintenance experts with suitable skills on CAD systems. Practical implications Products developed according to the approach envisaged can result in following aspects: lower repair time, better maintenance procedures on key components, easier preventive maintenance, less need for special tools, more ergonomic design, better communication between design and service engineers, simplicity and less complex training. Social implications Further research on maintainability will provide new information on how to apply this parameter on product development process (PDP), so design teams can better understand and address this relevant issue. The proposed method has been introduced in the PDP of a major multinational automotive company. Originality/value A new process is presented, considering the protection of needed spaces for maintenance procedures throughout the PDP, diverging to other studies that only propose analysis addressing maintainability at singular point in time during the product development. In just one case study presented, savings of US$1.3m were achieved by applying this space claim approach.


Author(s):  
G S Ray ◽  
B K Sinha ◽  
S Majumdar

The paper presents a procedure of computer aided design of high-speed impellers. The configurations are obtained using programs for the strength under the influence of centrifugal force within given constraints. The method provides a tool for optimizing stresses at an early design stage.


1976 ◽  
Vol 20 (02) ◽  
pp. 67-78
Author(s):  
Carl Arne Carlsen ◽  
Dag Kavlie

A program system, INDETS, for computer-aided design of tanker structures has been developed. The system, which is the result of a joint effort of the Norwegian Institute of Technology, Trondheim, and the Aker Group, Oslo, is considered an effective tool for practical design. A design module of INDETS for tanker transverse-plane bulkheads is presented. The girder system is analyzed by a three-dimensional frame model including the surrounding structure as substructures. Two optimization methods, the Stress Ratio Technique and the Sequential Unconstrained Minimization Technique, are applied. A number of parametric variations on topology have been performed, and the depth and breadth have been varied to derive curves for estimating the weight of bulkheads at the preliminary design stage. As a conclusion, a simple-formula is presented.


Sign in / Sign up

Export Citation Format

Share Document