The Selection and Optimum Well Testing Practices to Achieve Zero Flaring & Venting in Malaysian Water for a Petronas Field Development

2021 ◽  
Author(s):  
Adhi Naharindra ◽  
Zalina Ali ◽  
Nik Fazril Ain Sapi’an ◽  
Latief Riyanto ◽  
Fuziana Tusimin ◽  
...  

Abstract Increased HSE concerns and global economic efficiency from well testing activities especially on its environmental impact have left several oil and gas industries’ facing critical challenges to develop and monetize oil reserves. Some of these challenges include handling well effluents from well test unloading operations after well completion with high contaminants such as H2S and CO2 which will exacerbate environmental impact to safety, pollution, and oil spill risks. In addition, mitigation to environmental impact will be constrained to limited deck space and topside loads for offshore wellhead facilities and eventually restricts the footprint of well test unloading equipment. The scope of the paper is to examine the evolution of well deliverability testing from conventional well test facilities’ flaring practices to contemporary smokeless and zero flaring operations applied in a giant sand stones oil field in Malaysian water, which is surrounded by a world class environmentally protected marine and coastal ecosystem. The zero-flaring approach allows a demonstration of the safety & emission reduction, cost saving, technical viability, and economic benefits over traditional flaring techniques for 20 to 30 well testing during the life of field. Previous wells clean up method require flaring of oil and gas before the production facilities and flow lines were operational.commissioned. The application of environment friendly well testing system using the completed flow lines and production facilities enable zero-flaring option to be technically and economically viable. Zero-flaring well testing system provides several attractive benefits, with potential reduction in flaring equivalent of ±1000 barrels of oil, pollution avoidance, 40 - 50% schedule reduction and over 40% reduction in total project costs for the field development..

Author(s):  
Abdulaziz S. Al-Qasim ◽  
Fahad Almudairis ◽  
Abdulrahman Bin Omar ◽  
Abdullatif Omair

Abstract This paper discusses a method for optimizing production facilities design for onshore/offshore wells during new field development. Optimizing the development of new oil and gas fields necessitates the use of accurate predication techniques to minimize uncertainties associated with day-to-day operational challenges related to wells, pipelines and surface facilities. It involves the use of a transient multiphase flow simulator (TMFS) for designing new oil and gas production systems to determine the feasibility of its economic development. A synthetic offshore oil field that covers a wide range of subsurface and surface facility data is considered in this paper. 32 wells and two reservoirs are considered to evaluate the effect of varying sizes of tubing, wellhead choke, flowline, riser, and transport line. A detailed investigation of the scenario of emergency shutdowns to study its effect on the system is performed using TMFS. Other scenarios are also evaluated such as startup, depressurization, pigging, wax deposition, and hydrate formation. This paper provides a method to minimize the cost by selecting the optimum pipelines sizes and diameters, and investigating the requirements of insulation, risk of pipeline corrosions and other related flow assurance parameters. Different facility design scenarios are considered using TMFS tool to achieve operational flexibility and eliminate associated risks. Pressure and temperature conditions are evaluated under several parametric scenarios to determine the best dimensions of the production system. This paper will also provide insight into factors affecting the flow assurance of oil and gas reservoirs.


Author(s):  
Jack D. Marrelli ◽  
Ram S. Mohan ◽  
Shoubo Wang ◽  
Luis Gomez ◽  
Ovadia Shoham

First oil production from a deep-water oil field is to be achieved by the installation of an Initial Development System (IDS). Well testing is required for field development and reservoir management. The well testing system requires high accuracy oil and water rates to provide the data needed for decision analysis in ongoing drilling programs. The well testing system must also be integrated with other platform operations such as well clean up after drilling. The concept of a certain type of multiphase meter in a feedback control loop with conventional separation technology for process control is simulated to extend the capabilities of both technologies. The principle of GVF control as a supplementary to level control system has been developed for performance enhancement of oil field well testing. Concepts demonstrated here can also be easily applied as retro-fits to existing separation facilities which show accuracy or upset problems because of the simplicity and compact size of the additional multiphase meter component and non-disruptive supplementary integration with existing level control systems.


2005 ◽  
Vol 127 (4) ◽  
pp. 293-301 ◽  
Author(s):  
Jack D. Marrelli ◽  
Ram S. Mohan ◽  
Shoubo Wang ◽  
Luis Gomez ◽  
Ovadia Shoham

First oil production from a deep-water oil field is to be achieved by the installation of an initial development system (IDS). Well testing is required for field development and reservoir management. The well testing system requires high-accuracy oil and water rates to provide the data needed for decision analysis in ongoing drilling programs. The well testing system must also be integrated with other platform operations, such as well cleanup after drilling. We introduce here, the concept of a multiphase meter in series with conventional separation technology for improved process control. This feedback control loop configuration is simulated in MATLAB and shown to extend the capabilities of both technologies. The principle of gas volume fraction control in two-phase separator liquid lines is shown to be supplementary to conventional level control systems for performance enhancement of oil field well testing. Concepts demonstrated here can also be easily applied as retrofits to existing separation facilities, which show accuracy or upset problems.


2021 ◽  
Author(s):  
Gabriela Chaves ◽  
Danielle Monteiro ◽  
Virgilio José Martins Ferreira

Abstract Commingle production nodes are standard practice in the industry to combine multiple segments into one. This practice is adopted at the subsurface or surface to reduce costs, elements (e.g. pipes), and space. However, it leads to one problem: determine the rates of the single elements. This problem is recurrently solved in the platform scenario using the back allocation approach, where the total platform flowrate is used to obtain the individual wells’ flowrates. The wells’ flowrates are crucial to monitor, manage and make operational decisions in order to optimize field production. This work combined outflow (well and flowline) simulation, reservoir inflow, algorithms, and an optimization problem to calculate the wells’ flowrates and give a status about the current well state. Wells stated as unsuited indicates either the input data, the well model, or the well is behaving not as expected. The well status is valuable operational information that can be interpreted, for instance, to indicate the need for a new well testing, or as reliability rate for simulations run. The well flowrates are calculated considering three scenarios the probable, minimum and maximum. Real-time data is used as input data and production well test is used to tune and update well model and parameters routinely. The methodology was applied using a representative offshore oil field with 14 producing wells for two-years production time. The back allocation methodology showed robustness in all cases, labeling the wells properly, calculating the flowrates, and honoring the platform flowrate.


2021 ◽  
Vol 3 (8) ◽  
pp. 70-72
Author(s):  
Jianbo Hu ◽  
◽  
Yifeng Di ◽  
Qisheng Tang ◽  
Ren Wen ◽  
...  

In recent years, China has made certain achievements in shallow sea petroleum geological exploration and development, but the exploration of deep water areas is still in the initial stage, and the water depth in the South China Sea is generally 500 to 2000 meters, which is a deep water operation area. Although China has made some progress in the field of deep-water development of petroleum technology research, but compared with the international advanced countries in marine science and technology, there is a large gap, in the international competition is at a disadvantage, marine research technology and equipment is relatively backward, deep-sea resources exploration and development capacity is insufficient, high-end technology to foreign dependence. In order to better develop China's deep-sea oil and gas resources, it is necessary to strengthen the development of drilling and completion technology in the oil industry drilling engineering. This paper briefly describes the research overview, technical difficulties, design principles and main contents of the completion technology in deepwater drilling and completion engineering. It is expected to have some significance for the development of deepwater oil and gas fields in China.


2021 ◽  
Author(s):  
Nagaraju Reddicharla ◽  
Subba Ramarao Rachapudi ◽  
Indra Utama ◽  
Furqan Ahmed Khan ◽  
Prabhker Reddy Vanam ◽  
...  

Abstract Well testing is one of the vital process as part of reservoir performance monitoring. As field matures with increase in number of well stock, testing becomes tedious job in terms of resources (MPFM and test separators) and this affect the production quota delivery. In addition, the test data validation and approval follow a business process that needs up to 10 days before to accept or reject the well tests. The volume of well tests conducted were almost 10,000 and out of them around 10 To 15 % of tests were rejected statistically per year. The objective of the paper is to develop a methodology to reduce well test rejections and timely raising the flag for operator intervention to recommence the well test. This case study was applied in a mature field, which is producing for 40 years that has good volume of historical well test data is available. This paper discusses the development of a data driven Well test data analyzer and Optimizer supported by artificial intelligence (AI) for wells being tested using MPFM in two staged approach. The motivating idea is to ingest historical, real-time data, well model performance curve and prescribe the quality of the well test data to provide flag to operator on real time. The ML prediction results helps testing operations and can reduce the test acceptance turnaround timing drastically from 10 days to hours. In Second layer, an unsupervised model with historical data is helping to identify the parameters that affecting for rejection of the well test example duration of testing, choke size, GOR etc. The outcome from the modeling will be incorporated in updating the well test procedure and testing Philosophy. This approach is being under evaluation stage in one of the asset in ADNOC Onshore. The results are expected to be reducing the well test rejection by at least 5 % that further optimize the resources required and improve the back allocation process. Furthermore, real time flagging of the test Quality will help in reduction of validation cycle from 10 days hours to improve the well testing cycle process. This methodology improves integrated reservoir management compliance of well testing requirements in asset where resources are limited. This methodology is envisioned to be integrated with full field digital oil field Implementation. This is a novel approach to apply machine learning and artificial intelligence application to well testing. It maximizes the utilization of real-time data for creating advisory system that improve test data quality monitoring and timely decision-making to reduce the well test rejection.


2021 ◽  
Author(s):  
Khidir Mansum Ibragimov ◽  
Nahide Ismat Huseinova ◽  
Aliabas Alipasha Gadzhiev

Abstract For controlling the oil field development proposed an economically efficient express calculation and visualization method of the hydrodynamic parameters current values distribution in the productive formation. The presented report shows the results of applying this technique for determining the injected water propagation direction into the productive formation (X horizon) at the «Neft Dashlary» field. Based on the calculated results, the current distribution of the injected water was visualized in the selected section of the formation. High accuracy of the calculation was confirmed by comparing obtained results with the results of a simultaneous tracer study conducted in the field conditions. During tracer studies it was tested a new tracer material, more effective than its analogs. According to laboratory and experimental studies, the addition of 0.003% of this indicator substance to the volume of injected water is the optimal amount for its recognition in the well's product. At the allocated area of the "Neft Dashlari" field, the benefits from the use of the calculation method amounted to 62.9 thousand manats. Based on the obtained satisfying results of the new method for calculating hydrodynamic parameters and the use of a tracer indicator application at the «Neft Dashlary» oilfield, it is recommended to apply these developments in other oil and gas fields for mass diagnostic of the reservoir fluid distribution in a selected area of productive formations.


Author(s):  
Sorin Alexandru Gheorghiu ◽  
Cătălin Popescu

The present economic model is intended to provide an example of how to take into consideration risks and uncertainties in the case of a field that is developed with water injection. The risks and uncertainties are related, on one hand to field operations (drilling time, delays due to drilling problems, rig failures and materials supply, electric submersible pump [ESP] installations failures with the consequences of losing the well), and on the other hand, the second set of uncertainties are related to costs (operational expenditures-OPEX and capital expenditures-CAPEX, daily drilling rig costs), prices (oil, gas, separation, and water injection preparation), production profiles, and discount factor. All the calculations are probabilistic. The authors are intending to provide a comprehensive solution for assessing the business performance of an oil field development.


Sign in / Sign up

Export Citation Format

Share Document