Enabling Extended Reach Wells with the Aid of an Ultra-High Speed Rotational Reamer Shoe

2021 ◽  
Author(s):  
Manchukarn Naknaka ◽  
Chimere Nkwocha ◽  
Pattarapong Prasongtham ◽  
Tossapol Tongkum ◽  
Trinh Dinh Phu ◽  
...  

Abstract Well X is an infill horizontal well designed for the Gulf of Thailand. It is challenging due to the following factors - A long 8 ½ inch open hole section, An extended reach section at horizontal or near horizontal, the presence of loss circulation zones, an Extended Reach Drilling (ERD) ratio of 2.725 and a Drilling Difficulty Index (DDI) of 6.762. The key challenge was to successfully deploy the 7 inch casing across 12,350 ftMD of open hole, with potential loss circulation zones. In spite of these difficulties, the 7 inch casing was successfully landed with the use of an Ultra-High Speed Rotational Reamer Shoe. Historically, losses of circulation have posed significant challenges to well delivery in the Gulf of Thailand wells. In Well X, this is further complicated by a long open-hole section with a step-out of over 10,000 ftMD. It was determined that the successful deployment of the 7 inch casing would require some degree of agitation at the nose, and such a device must be tolerant to the Lost Circulation Materials (LCM) type and the composition of the drilling fluid and the cement. An ultra-high speed rotational reamer shoe was specially configured to meet the LCM requirements in the displaced fluid, for use in deploying the casing. While deploying the 7 inch casing, losses of up to 20 bbls/hr occurred from 7,043 ftMD while running at 15 joints/hr. A loss circulation recipe comprising of 60 bbls of 30 ppb Tiger LCM was mixed and successfully displaced through the customized ultra-high speed reamer shoe to cure losses. The casing was washed down from 10,569 to 11,610 ftMD, filling casing each stand. The 7 inch casing was successfully landed at the target depth of 12,353 feet and subsequently cemented. Drill out operations took 1.5 hours to complete. A formation integrity test (FIT) showed good shoe strength which was later confirmed by the cement evaluation logs. The comprehensive Ultra-High Speed Reamer Shoe was configured with a minimum restriction of 15mm, which is 5 times the diameter of the maximum particle size in the LCM of 3 mm. The tool was designed to tolerate the prescribed loss circulation materials, making it possible to cure the losses while running the casing string. The innovative Ultra-High Speed Reamer Shoe has demonstrated its usefulness by providing a higher probability for successfully deploying the 7 inch production casing over the extended reach section of Well X. The application of this technology can mitigate against non-productive time such as wiper trips or excessive washing down or casing rotation. It has proven to be a reliable technology that can be used in the industry in challenging well designs.

2021 ◽  
Author(s):  
Manchukarn Naknaka ◽  
Trinh Dinh Phu ◽  
Khamawat Siritheerasas ◽  
Pattarapong Prasongtham ◽  
Feras Abu-Jafar ◽  
...  

Abstract The objective of this research is to describe the methodology used to drill the most extended reach well (ERD) in the Gulf of Thailand. The Jasmine field is a mature, sophisticated, oil field with many shallow reservoir targets that require a minimum 10,000ft horizontal displacement. As such, the main challenges faced, and the novel technology applied is described in detail by this research. The research is an example of successfully drilling a challenging well, safely and efficiently. The Jasmine C – Well X, is a 3-string design structure with an 11-3/4in top hole, an 8-1/2in intermediate section, and a 6-1/8in reservoir horizontal section. Well X was constructed by utilizing an existing platform well slot. The challenge involved drilling from the top hole to the kickoff point and directional drilling away from the casing stump of the existing well to avoid any collision with nearby wells emanating from the Jasmine C platform. The 8-1/2in hole section was the most important segment as it had to reach the landing point precisely in order to start the 6-1/8in section for GeoSteering in the reservoir section. The 8-1/2in section encountered three challenges that could affect drilling efficiency.Directional Drilling – The complexities of the well profile:The method involved making well inclination (INC) lower than 82deg in the tangent interval in order to reduce the well's tortuosity as much as possible.Hole condition – Hole cleaning and fluid losses control:The method involved the use of Low Toxicity Oil Based Mud (LTOBM) CaCO3 system, the chemical elements in the drilling fluid system could help to seal the high permeable zones.Drilling Engineering – Torque and Drag (T&D) control:The method taked into account the 7in casing run to the bottom of the hole, which the casing driven system did not allow for rotation The well was completed successfully without any additional trips. A Total Depth (TD) was of 13,052ftMD was achieved to reach reservoirs at 3,260ft TVDSS. It was therefore announced in 2019 as a new ERD record for Mubadala Thailand (ERD ratio = 3.26, Directional Difficulty Index (DDI) = 6.95). The top hole and 9-5/8in casing were set in the right depth. An 8-1/2in section was accomplished on the planned trajectory with an average on bottom Rate of Penetration (ROP) at 319 ft/hr. The 6-1/8in section was drilled by geosteering to achieve sub-surface objectives. A total of 2,143ft intervals inside the reservoir was successfully achieved. While drilling, lost circulation events occured, but the mud system was conditioned with Lost Circulation Materials (LCM). Therefore, drilling performance was unaffected. Moreover, the Bit's Total Flow Area (TFA) and Rotary steering systems (RSS) flow restrictor was configured to allow directional drilling at a very low Flow rate of 470gpm. Addition, 30 joints of 5-1/2in Heavy Weight Drill Pipe (HWDP) and 39 joints of 4in HWDP were added into the Bottom Hole Assembly (BHA) to transfer string weight to drill bitsand drill to well TD. As complexities of the well profile were fully aware, the casing was runned and minimized the open hole friction until the casing was deployed successfully. In the Gulf of Thailand, drilling the longest ERD well in a shallow True Vertical Depth (TVD) was clearly groundbreaking and entailed the successful management of the key operational challenges related to identification, job planning, design, technology selection, and implementation. This research illuminates the challenges and technical solutions of long ERD well and serves as an example of what can be achieved in the region and globally.


2013 ◽  
Vol 651 ◽  
pp. 717-721 ◽  
Author(s):  
Jin Feng Wang ◽  
Jin Gen Deng

Fuzzy ball drilling fluids have been developed in order to effectively control lost circulation during CBM drilling. Depending upon fuzzy balls and colloids in fuzzy balls, the fuzzy ball drilling fluids changed their shapes and properties to completely plug underground heterogeneous seepage channels so as to strengthen the pressure bearing capacity of formations. This paper describes the available features of the fuzzy ball drilling fluid including efficient plugging, good carrying and suspension, formation damage control, compatible weighted by any weighted materials without auxiliary equipment. The fuzzy ball drilling fluids can finish drilling in low pressure natural gas zone, control CBM leakage; control the natural fractures, drilling in different pressures in the same open hole, combination with the air drilling mode, etc. during Ordos CBM drilling. The fuzzy ball drilling fluid will not affect down-hole motors and MWD. The fuzzy ball drilling fluid will be blend simply as conventional water based drilling fluids. The existing CBM drilling equipment can completely meet the fuzzy ball drilling mixing and it is maintained conveniently. The fuzzy ball drilling fluid is the efficient drilling fluid.


2012 ◽  
Author(s):  
Kerati Charnvit ◽  
Abhijart Kongto ◽  
Fransiskus Huadi ◽  
Sunil Sharma ◽  
Gerard A. Simon ◽  
...  

2021 ◽  
Author(s):  
Rodrigo Antillon Moreira ◽  
Ramanujan Jeughale ◽  
Toki Takahiro ◽  
Toma Motohiro ◽  
Kerron Andrews ◽  
...  

Abstract Reservoir sections in MRC (Maximum Reservoir Contact) & ERD (Extended Reach Drilling) wells are mainly designed to drill 8 ½" hole, because of drilling limitations with smaller hole size. However, slim hole sizes offer opportunities to revitalize existing wells using re-entry drilling techniques in association with MRC and ERD designs. This paper discusses the best practices to be implemented in order to mitigate risk, reduce complexity and ensure improved drilling performance. Re-Entry wells in the field have a risk of well integrity issues such as corroded 9 5/8" casing. In order to mitigate this risk, the corroded 9 5/8" casing should be covered by 7" liner & tied-back to surface before drilling reservoir section. In this situation up to 18,000 ft of 4" DP is used in the wells to drill 6" hole and run 4 ½" lower completion. Offset well analysis, whip stock selection criteria, BHA design, drilling fluid selection, drilling and tripping practices based on torque & drag and hydraulics calculations are most important to achieve the well objective. The Slim hole MRC well was completed without any issues and achieved good drilling performance. It was observed that the actual drilling parameters such as torque, drag and stand pipe pressure were less than simulated parameters. NAF was selected in the section to reduce the friction factor, while motorized RSS and a reamer stabilizer were used in the BHA to reduce torque, drag and ensure a smooth well profile. A back reaming practice was implemented in hole section to reduce dog leg severity and the open hole was eventually displaced to viscosified brine to minimize the friction factor for running the 4 ½' lower completion. 8500 ft of 6" hole section was drilled and TD was reached at +/- 19,000ft within 50 days including recovering the existing completion, drilling 8 ½" & 6" hole and running completion. This paper aims to contribute to the oilfield industry by sharing the successfully implemented engineering design and operation execution methodology to overcome the complexities present in Re Entry Wells MRC/ERD wells required to be drilled with slim hole conditions under an optimal cost, time effectiveness and low risk.


2021 ◽  
Author(s):  
Thanudcha Khunmek ◽  
Keith Parrott ◽  
Ahamad Faidzal Bin Rosli

Abstract The completion of a highly deviated well involves overcoming significant deployment challenges during the drilling operations that require precise and effective conveyance and intervention. The conventional slickline intervention is unsuitable for wells with more than 60° deviation. The operator has sought to implement efficient, reliable and cost-effective deployment methods in delivering injector well. Thus, the operator decided on the e-line tubing tractor conveyed with e-line key and an e-line stroking tool. A tubing tractor and mechanical key and stroker were used to convey the wireline key in highly deviated wells. The key and stroker tools are latched into the sliding side doors (SSDs). They will activate open or close SSDs by down-strokes or up-strokes. In particular, the SSDs are closed when it is required to pressure up the tubing to set the packers. After the packers are set, an integrity test is conducted to confirm zonal isolation. Finally, the SSD is shifted open by the tubing tractor and a low rate injection test is performed to confirm the status of the SSD before handover the well. The operation had successfully installed multiple zones injection completions (MZC) in a highly deviated well and complemented the new completion design for the sand control in water injection well. The e-line tubing tractor and well key/stroker tools have met all operational and budgetary expectations. The traditional intervention methods in highly deviated wells, such as coil tubing, can be costly and potentially infeasible due to a footprint constraint on the drilling rig. The completion was successfully installed without any HSSE issues and the lesson learnt was recorded for future interventions when a change of injection zones is required. For a water injector completion design, equipment was selected based on reservoir requirements i.e. sand control, injection rates and pressure, etc. The goal was to prevent sand from flowing into the tubing when water injection is temporarily paused. To address this concern, the team designed and implemented a cost- effective Autonomous Inflow Control Device (AICD) with bypass valves equipped with SSDs for injection zone selectivity. This first well has been on injection for more than two years with no sand observed in the tubing or declines in the injection rate. The e-line tubing tractor and well key/stroker tools enabled the success of this operations and should be an option for completions in highly deviated wells. Additionally, this is the first time an AICD with bypass valves has been installed for a water injection well in the Gulf of Thailand. The success achieved with this operation in the Nong Yao field provides operators with a new solution for dealing with the water injection in the unconsolidated reservoirs.


2012 ◽  
Vol 602-604 ◽  
pp. 843-846
Author(s):  
Zuo Chen Li ◽  
Zhi Heng Zhang ◽  
Liang Zhan ◽  
Jia Rong Cai

Fuzzy ball drilling fluids have been developed in order to effectively control lost circulation during CBM drilling. Depending upon fuzzy balls and colloids in fuzzy balls, the fuzzy ball drilling fluids changed their shapes and properties to completely plug underground heterogeneous seepage channels so as to strengthen the pressure bearing capacity of formations. This paper describes the available features of the fuzzy ball drilling fluid including efficient plugging, good carrying and suspension, formation damage control, compatible weighted by any weighted materials without auxiliary equipment. The fuzzy ball drilling fluids can finish drilling in low pressure natural gas zone, control CBM leakage; control the natural fractures, drilling in different pressures in the same open hole, combination with the air drilling mode, etc. during Ordos CBM drilling. The fuzzy ball drilling fluid will not affect down-hole motors and MWD. The fuzzy ball drilling fluid will be blend simply as conventional water based drilling fluids. The existing CBM drilling equipment can completely meet the fuzzy ball drilling mixing and it is maintained conveniently. The fuzzy ball drilling fluid is the efficient drilling fluid.


2009 ◽  
Vol E92-C (7) ◽  
pp. 922-928 ◽  
Author(s):  
Kikuo MAKITA ◽  
Kazuhiro SHIBA ◽  
Takeshi NAKATA ◽  
Emiko MIZUKI ◽  
Sawaki WATANABE

Author(s):  
Ryoken Masuda ◽  
Manabu Horiuchi ◽  
Mitsuhide Sato ◽  
Yinggang Bu ◽  
Masami Nirei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document