Cutting Re-injection CRI Uncertainty and Risk Assessment

2021 ◽  
Author(s):  
Ayman Samy

Abstract It is the responsibility of oil and gas operators to recycle or dispose of drilling cuttings in a safe and environmentally friendly manner. Environmental regulations are very strict in establishing that green operations and cutting re-injection be as clean and friendly to environment as possible despite the associated challenges and cost. It is the preferred technique by the majority of international companies. Cutting re-Injection operations include grinding down the drilling cutting to small particle sizes and mixing them with a water-based fluid (mud, water, gel) to form a slurry. The slurry is then pumped under high pressure into a disposal formation where fractures can be initiated and propagated. Existing wells can be used as appropriate by targeting watered-out formations far from hydrocarbon- bearing zones; sometimes operators drill new wells purely for cutting reinjection purposes. The main sources of uncertainty include reservoir heterogeneity, permeability, pore throat size and fluid leakoff rates into the formation. The optimum scenario is to pump the cutting re-injection slurry into a very high permeability formation where screening out, plugging or well packing is unlikely, assuming solids are suspended and are completely lost into the formation. This scenario can only be feasible if the formation pore throat size is much larger than the solid size. This paper presents how to conduct risk assessments for all possible scenarios considering all sources of uncertainties. The paper also shows that under some circumstances it is better to pump the cutting slurry into a very tight formation, such as shale (closed system), than a permeable formation with a high degree of uncertainty where screenout potential risk is most likely.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yu Li ◽  
Meilong Fu ◽  
Baofeng Hou ◽  
Zhiyuan Zhang ◽  
Ruiyi Sun

To address the issues of reservoir blockage and sharp decline in fluid output of production wells in the polymer injection zone of the Henan oilfield, physical modeling has been used to study the blockage mechanism and blockage locations of the polymer-flooded reservoir based on oil reservoir characteristics and blockage knowledge. The results show that all the constant pressures in the low, moderate, and high permeability cores subjected to polymer injection and subsequent waterflooding were higher than the constant pressure during primary waterflooding; hence, polymer retention and blockage phenomena were obvious in the cores; in the high permeability core, the pore surface adsorbed more polymer molecules though pore throat radii were still much greater than the size of the polymer molecule, suggesting that polymer blockage is mainly caused by adsorption and retention. For the low permeability core, the specific surface area of the inlet end was much larger than that in the high permeability core, leading to more serious capture of polymer molecules at the small pores, indicating that blockage under polymer injection is mainly caused by capture and retention; for the lower permeability (91.81 mD) core, as compared with the case prior to polymer injection, the polymer-injected core had fewer large pores and throats, the mean pore throat radius decreased from 42.2 μm to 39.9 μm, and the mean throat-to-pore coordination number decreased from 3.36 to 3.19; thus, polymer capture and retention led to core blockage; the leftward shift of the curve corresponding to the porosity component, high porosity peak weakening after polymer injection, moderate and low porosity peaks appearing after polymer injection, and enhancement of lower porosity peaks indicate that, after polymer injection and subsequent waterflooding, polymer adsorption and capture led to blockage of some large pores; the highest pressure gradient, i.e., 6.3 MPa/m, was achieved at the P2-P3 segment; thus, the worst blockage occurred at the P2-P3 stage, or 1/8-1/4 of the sandpack length. In this paper, Nanbaxian oil and gas field, China, was taken as an example to investigate the interpretation method of gas saturation in a complex pore structure. The “four properties” relationship of the formation reservoir in the Nanbaxian oil and gas field was studied in depth according to the conventional logging data and core analysis data. The neural network algorithm was used to reconstruct the resistivity curve of the water layer to eliminate the influence of lithology, shale content, and pore structure on the resistivity. The difference between the reconstructed curve and the measured resistivity curve was used to identify the gas and water, and the ratio of the two was used to calculate the gas saturation, and good results were achieved. It was found that the sedimentary types of the Nanbaxian oil and gas field cause the reservoir to be thin, numerous, and dispersed; the lateral correlation is difficult. In addition, the structural features lead to the reservoir types being various in the vertical direction, which makes the identification of reservoir fluid more difficult. The results revealed that the rock compaction, poor physical properties, complex pore structure, high resistivity of surrounding rocks, and low formation water salinity make the water layer with high resistivity and difficult to identify gas and water.


Author(s):  
Cecil E. Hall

The visualization of organic macromolecules such as proteins, nucleic acids, viruses and virus components has reached its high degree of effectiveness owing to refinements and reliability of instruments and to the invention of methods for enhancing the structure of these materials within the electron image. The latter techniques have been most important because what can be seen depends upon the molecular and atomic character of the object as modified which is rarely evident in the pristine material. Structure may thus be displayed by the arts of positive and negative staining, shadow casting, replication and other techniques. Enhancement of contrast, which delineates bounds of isolated macromolecules has been effected progressively over the years as illustrated in Figs. 1, 2, 3 and 4 by these methods. We now look to the future wondering what other visions are waiting to be seen. The instrument designers will need to exact from the arts of fabrication the performance that theory has prescribed as well as methods for phase and interference contrast with explorations of the potentialities of very high and very low voltages. Chemistry must play an increasingly important part in future progress by providing specific stain molecules of high visibility, substrates of vanishing “noise” level and means for preservation of molecular structures that usually exist in a solvated condition.


2011 ◽  
Vol E94-C (10) ◽  
pp. 1548-1556 ◽  
Author(s):  
Takana KAHO ◽  
Yo YAMAGUCHI ◽  
Kazuhiro UEHARA ◽  
Kiyomichi ARAKI

Alloy Digest ◽  
1991 ◽  
Vol 40 (12) ◽  

Abstract MUMETAL is a very high permeability soft magnetic alloy. (See also Alloy Digest Ni-25, April 1956.) This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on heat treating. Filing Code: Ni-398. Producer or source: Spang Specialty Metals.


Alloy Digest ◽  
1972 ◽  
Vol 21 (11) ◽  

Abstract BLENDALLOY 25-7904 is an 80% nickel-15% iron-5% molybdenum alloy having very high permeability and low coercive force for magnetic cores in such applications as transformer laminations, sensitive magnetic amplifiers and magnetic shielding. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-181. Producer or source: Spang Industries Inc..


Genetics ◽  
1996 ◽  
Vol 144 (2) ◽  
pp. 635-645 ◽  
Author(s):  
David A Kirby ◽  
Wolfgang Stephan

Abstract We surveyed sequence variation and divergence for the entire 5972-bp transcriptional unit of the white gene in 15 lines of Drosophila melanogaster and one line of D. simulans. We found a very high degree of haplotypic structuring for the polymorphisms in the 3′ half of the gene, as opposed to the polymorphisms in the 5′ half. To determine the evolutionary mechanisms responsible for this pattern, we sequenced a 1612-bp segment of the white gene from an additional 33 lines of D. melanogaster from a European and a North American population. This 1612-bp segment encompasses an 834bp region of the white gene in which the polymorphisms form high frequency haplotypes that cannot be explained by a neutral equilibrium model of molecular evolution. The small number of recombinants in the 834bp region suggests epistatic selection as the cause of the haplotypic structuring, while an investigation of nucleotide diversity supports a directional selection hypothesis. A multi-locus selection model that combines features from both-hypotheses and takes the recent history of D. melanogaster into account may be the best explanation for these data.


2009 ◽  
Author(s):  
Luis Fernando Neumann ◽  
Jose Dante Henriques Rocha ◽  
NIlson Jose Denadai

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
M. Yadav ◽  
Sumit Kumar ◽  
P. N. Yadav

Acidization is an oil reservoir stimulation technique for increasing oil well productivity. Hydrochloric acid is used in oil and gas production to stimulate the formation. The acid treatment occurs through N80 steel tubes. The process requires a high degree of corrosion inhibition of tubing material (N80 steel). In the present investigation effect of synthesized amino acid compounds, namely, acetamidoleucine (AAL) and benzamidoleucine (BAL) as corrosion inhibitors for N80 steel in 15% HCl solution was studied by polarization, AC impedance (EIS), and weight loss measurements. It was found that both the inhibitors were effective inhibitors and their inhibition efficiency was significantly increased with increasing concentration of inhibitors. Polarization curves revealed that the studied inhibitors represent mixed type inhibitors. AC impedance studies revealed that charge transfer resistance increases and double layer capacitance decreases in presence of inhibitors. Adsorption of inhibitors at the surface of N80 steel was found to obey Langmuir isotherm.


1977 ◽  
Vol 27 (1) ◽  
pp. 81-90
Author(s):  
S.A. Filfilan ◽  
D.C. Sigee

The uptake of tritiated thymine into cells of a heterogeneous population of Prorocentrum micans was investigated using light-microscope and electron-microscope autoradiography. Specificity of thymine uptake into DNA was demonstrated by the specific removal of label from wax-embedded material using DNase and by the high degree of localization of nuclear label to chromosomes in the electron-microscope autoradiographs. All nuclei, including both dividing and non-dividing cells, showed a substantial uptake of label, indicating that nuclear DNA synthesis in Prorocentrum micans is a continuous process. The level of DNA synthesis does show considerable variation, however, with very high levels in some interphase nuclei. The continuous replication of nuclear DNA provides further evidence of dinoflagellate affinity to the prokaryotes, and indicates that Prorocentrum micans is a very primitive eukaryote cell.


Author(s):  
Arthur Yosef ◽  
Eli Shnaider ◽  
Rimona Palas ◽  
Amos Baranes

This study presents a decision-support method to estimate the next year performance of corporate Operating Income Margin (OIM). It is based on a unique combination of cross-section model and the rules-based evaluation mechanism. The estimate is done in terms of broad categories, and not precise numerical values. The model is constructed as follows: its dependent variable (OIM) is one year ahead vs. the corresponding explanatory variables. This structure of the model allows us to view explanatory variables as reflecting financial potential of corporations. The evaluation component consists of a set of rules designed to identify the companies whose “potential” clearly points to an opportunity to invest. For the method presented here to succeed, it is necessary to utilize a highly reliable modeling method, even if it is “Fuzzy”. We apply Soft Regression (SR), which is a Soft Computing modeling tool based on Fuzzy Logic, and utilize all available proxy variables by creating intervals of values. Advantages of utilizing SR, and the intervals’-based modeling are extensively discussed. Modeling results for five consecutive years are consistent and stable, thus indicating high degree of reliability. Testing indicates very high success rate for the stock market related domain, the lowest being 87.9%.


Sign in / Sign up

Export Citation Format

Share Document