A Computational Model for Wells’ Performance Analysis

2021 ◽  
Author(s):  
Okon Edet Ita ◽  
Dulu Appah

Abstract The ability to identify underperforming wells and recover the remaining oil in place is a cornerstone for effective reservoir management and field development strategies. As advancement in computing programming capabilities continuous to grow, Python has become an attractive method to build complicated statistical models that predicts, diagnose or analyze well performance, efficiently and accurately. The aim of this study is to develop a computational model that will allows us to diagnose and analyze well performance using nodal analysis with the help of python. In this study, python was used to compute Nodal analysis method using Darcy and Vogel Equations. A case study was carried out using the data obtained from a field operating in the Niger Delta. Again, sensitivity of tubing size was conducted using python. The results obtained showed that a computational model with python has the ability to visualize, model and analyze wells performances. This technique will petroleum engineers to better monitor evaluate and enhance their production operation without the need for expensive softwares. This will reduce operating cost increases revenue.


2016 ◽  
Vol 19 (03) ◽  
pp. 391-402
Author(s):  
Sunday Amoyedo ◽  
Emmanuel Ekut ◽  
Rasaki Salami ◽  
Liliana Goncalves-Ferreira ◽  
Pascal Desegaulx

Summary This paper presents case studies focused on the interpretation and integration of seismic reservoir monitoring from several fields in conventional offshore and deepwater Niger Delta. The fields are characterized by different geological settings and development-maturity stages. We show different applications varying from qualitative to quantitative use of time-lapse (4D) seismic information. In the first case study, which is in shallow water, the field has specific reservoir-development challenges, simple geology, and is in phased development. On this field, 4D seismic, which was acquired several years ago, is characterized by poor seismic repeatability. Nevertheless, we show that because of improvements from seismic reprocessing, 4D seismic makes qualitative contributions to the ongoing field development. In the second case study, the field is characterized by complex geological settings. The 4D seismic is affected by overburden with strong lateral variations in velocity and steeply dipping structure (up to 40°). Prestack-depth-imaging (PSDM) 4D seismic is used in a more-qualitative manner to monitor gas injection, validate the geologic/reservoir models, optimize infill injector placement, and consequently, enhance field-development economics. The third case study presents a deep offshore field characterized by a complex depositional system for some reservoirs. In this example, good 4D-seismic repeatability (sum of source- and receiver-placement differences between surveys, dS+dR) is achieved, leading to an increased quantitative use of 4D monitoring for the assessment of sand/sand communication, mapping of oil/water (OWC) front, pressure evolution, and dynamic calibration of petro-elastic model (PEM), and also as a seismic-based production-logging tool. In addition, 4D seismic is used to update seismic interpretation, provide a better understanding of internal architecture of the reservoirs units, and, thereby, yield a more-robust reservoir model. The 4D seismic in this field is a key tool for field-development optimization and reservoir management. The last case study illustrates the need for seismic-feasibility studies to detect 4D responses related to production. In addition to assessing the impact of the field environment on the 4D- seismic signal, these studies also help in choosing the optimum seismic-survey type, design, and acquisition parameters. These studies would possibly lead to the adoption of new technologies such as broad-band streamer or nodes acquisition in the near future.



2020 ◽  
Author(s):  
Okiemute Amuboh ◽  
Suleiman Ahmed ◽  
Dolapo Enya ◽  
Gbolade Ibikunle ◽  
Imonite Imorame ◽  
...  


Author(s):  
Richard E. Pearce ◽  
Bryan R. Becker

The objective was to provide a useful computational tool for assessing the impact of condenser tube modifications on power plant condenser performance and unit heat rate, which directly affect the operating cost. To achieve this, a methodology was utilized to evaluate the economics of condenser modifications based upon design and economic information. The numerical model of condenser performance was developed using the Heat Exchanger Institute method and the Resistance Summation method. The software calculates results based on both methods but this paper will only discuss the results from the Heat Exchanger Institute method for the case study. Since condenser performance has a direct impact upon fuel costs, heat rate, power production and emissions, this computational model can be used to assess the economic impact of a proposed condenser tubing replacement over a specified service life. A case study will be discussed concerning a condenser tube replacement project that was analyzed to determine the ideal replacement tube material for the relevant parameters associated with this particular unit.



2021 ◽  
Author(s):  
Linda Dennar ◽  
Mohammed Amro ◽  
Nicolai-Alexeji Kummer ◽  
Elias Arochukwu ◽  
Ahmed Suleiman ◽  
...  

Abstract Enhanced oil recovery has been gaining relevance over the years following success stories from already executed projects from various parts of the globe. The recoveries from such successful projects have tremendously increased the terminal life cycle recoveries from the subject reservoirs and subsequently the project Net Present Value and Value to Investment Ratio. More than 90% of Field Development Plans in the Niger Delta have not considered Enhanced Recovery Mechanism as part of the field development options and as such Top Quartile Recovery Factors are never achieved. In this study, the effectiveness of Enhanced Oil Recovery within the Niger-Delta reservoir sands via 3-Dimentional Dynamic Simulation, Economic models and Experimental investigations (temperature and pressure effects on polymer effectiveness) was done. The GN7000 reservoir was used as a case study for this work. This reservoir is the largest gas cap reservoir in the N-Onshore field within the Niger Delta area and it is at the mid-life stage. This study tested the effectiveness of three Recovery mechanisms (Water Flood, Polymer Flood and Polymer Alternating Gas). Simulated and Experimental result suggests that Polymer flooding and Polymer Alternating Gas (PAG) yields greater Technical Ultimate Recovery, better economic indices but greater complexity in polymer selection due to inherent high reservoir temperature and low salinity that make the use of synthetic polymers inadequate. Experimental investigation showed that biopolymers are most suitable for this sand. The suitability of some biopolymers (Xanthan and copolymers containing high level of 2-acrylamido2-methyl propane sulfonate (AMPS) showed good results. Study results shows that with the deployment of biopolymers with high viscosifying power and high resistance to thermal degradation an incremental recovery of 8% from the natural flow could be achieved. Research findings indicate that biopolymers could yield good results for Niger Delta sands within the pressure and temperature ranges of 93°C and 290 Bar.



2020 ◽  
Vol 17 (3) ◽  
pp. 150-155
Author(s):  
Tega Odjugo ◽  
Yahaya Baba ◽  
Aliyu Aliyu ◽  
Ndubuisi Okereke ◽  
Lekan Oloyede ◽  
...  

Hydrocarbon exploration basically requires effective drilling and efficient overpowering of frictional and viscosity forces. Normally, frictional power losses occur in deep well systems and it is essential to analyse each component of any well system to determine where exactly pressure is lost, and this can be done using Nodal Analysis. In this study, nodal analysis has been carried out with the use of PROSPER, a software for well performance, design and optimisation. Artificial lifts can then be used to solve the problem of frictional power losses. To increase the production of Barbra 1 well in the Niger Delta and hence extend its functional life, we have applied nodal analysis. Modelling results for three artificial lift methods; continuous gas lift, intermittent gas lift and electrical submersible pump were found to be 1734.93 bbl/day, 451.50 bbl/day and 2869 bbl/day respectively. The output from the well performance without artificial lift was 1370.99 bbl/day by applying Darcy’s model. Meanwhile, the output from the well without artificial lift is 89.90 bbl/day when aided with productivity index (PI) entry, the normal model for intermittent gas lift. Hence, from the comparative analysis of the results obtained from this study, it was deduced that when artificial lifts are employed, the well output increases significantly from 1370.99bbl/day to 2869 bbl/day (electrical submersible pump). This study concludes that wells such as Barbra 1 are good candidates for artificial lift, and this is evidenced by increasing productivity. Keywords: Production optimisation, nodal analysis, prosper simulator and barbra well.



2011 ◽  
Vol 402 ◽  
pp. 812-815
Author(s):  
Rui Dong Zhao ◽  
Chun Ming Xiong ◽  
Zhen Tao ◽  
Jian Jun Zhang ◽  
Lei Su ◽  
...  

Nodal analysis, defined as a systems approach to the optimization of oil and gas wells, is used to evaluate thoroughly a complete producing system. For the systematicness easily ignored during the design of artificial lifting system, based on coordination principle of reservoir, wellbore and lifting equipment, the concept of well performance curves are proposed. With the well performance curves, a new nodal analysis method of artificial lifting system is obtained, which is more efficient. Upstream and downstream pressure of pump and pressure difference provided by pump are displayed in well performance curve, which reflects the property of the well itself. Through further research of well performance curve, the energy of well itself will be fully developed, system effectiveness will be raised, and energy consumption will be reduced.



2017 ◽  
Author(s):  
Cem Kilic ◽  
Anindya Das ◽  
Thaddeus Ehighebolo ◽  
Tayo Balogun ◽  
Olaniyi Adenaiye ◽  
...  


Author(s):  
Charlie B. DeStefano ◽  
David C. Jensen

In a time when major technological advancements are happening at incredible rates and where demands for next-generation systems are constantly growing, advancements in failure analysis methods must constantly be developed, as well. Performance and safety are always top concerns for high-risk complex systems, and therefore, it is important for new failure analysis methods to be explored in order to obtain more useful and comprehensive failure information as early as possible, particularly during early design phases when detailed models might not yet exist. Therefore, this paper proposes a qualitative, function-based failure analysis method for early design phases that is capable of not only analyzing potential failure modes for physical components, but also for any manufacturing processes that might cause failures, as well. In this paper, the proposed method is first described in general and then applied in a case study of a proposed design for a nanochannel DNA sequencing device. Lastly, this paper discusses how more advanced and detailed analyses can be incorporated into this approach during later design phases, when more failure information becomes available.



2019 ◽  
Vol 5 (1) ◽  
pp. 38-49 ◽  
Author(s):  
B. K. Handoyo ◽  
M. R. Mashudi ◽  
H. P. Ipung

Current supply chain methods are having difficulties in resolving problems arising from the lack of trust in supply chains. The root reason lies in two challenges brought to the traditional mechanism: self-interests of supply chain members and information asymmetry in production processes. Blockchain is a promising technology to address these problems. The key objective of this paper is to present qualitative analysis for blockchain in supply chain as the decision-making framework to implement this new technology. The analysis method used Val IT business case framework, validated by the expert judgements. The further study needs to be elaborated by either the existing organization that use blockchain or assessment by the organization that will use blockchain to improve their supply chain management.



Sign in / Sign up

Export Citation Format

Share Document