Differences in Gas/Oil and Gas/Water Relative Permeability

Author(s):  
J.F. Berry ◽  
A.J.H. Little ◽  
R.C. Skinner
2006 ◽  
Vol 9 (06) ◽  
pp. 688-697 ◽  
Author(s):  
Mahmoud Jamiolahmady ◽  
Ali Danesh ◽  
D.H. Tehrani ◽  
Mehran Sohrabi

Summary It has been demonstrated, first by this laboratory and subsequently by other researchers, that the gas and condensate relative permeability can increase significantly by increasing rate, contrary to the common understanding. There are now a number of correlations in the literature and commercial reservoir simulators accounting for the positive effect of coupling and the negative effect of inertia at near-wellbore conditions. The available functional forms estimate the two effects separately and include a number of parameters, which should be determined with measurements at high-velocity conditions. Measurements of gas/condensate relative permeability at simulated near-wellbore conditions are very demanding and expensive. Recent experimental findings in this laboratory indicate that measured gas/condensate relative permeability values on cores with different characteristics become more similar if expressed in terms of fractional flow instead of the commonly used saturation. This would lower the number of rock curves required in reservoir studies. Hence, we have used a large data bank of gas/condensate relative permeability measurements to develop a general correlation accounting for the combined effect of coupling and inertia as a function of fractional flow. The parameters of the new correlation are either universal, applicable to all types of rocks, or can be determined from commonly measured petrophysical data. The developed correlation has been evaluated by comparing its prediction with the gas/condensate relative permeability values measured at near-wellbore conditions on reservoir rocks not used in its development. The results are quite satisfactory, confirming that the correlation can provide reliable information on variations of relative permeability at near-wellbore conditions with no requirement for expensive measurements. Introduction The process of condensation around the wellbore in a gas/condensate reservoir, when the pressure falls below the dewpoint, creates a region in which both gas and condensate phases flow. The flow behavior in this region is controlled by the viscous, capillary, and inertial forces. This, along with the presence of condensate in all the pores, dictates a flow mechanism that is different from that of gas/oil and gas/condensate in the bulk of the reservoir (Danesh et al. 1989). Accurate determination of gas/condensate relative permeability (kr) values, which is very important in well-deliverability estimates, is a major challenge and requires an approach different from that for conventional gas/oil systems. It has been widely accepted that relative permeability (kr) values at low values of interfacial tension (IFT) are strong functions of IFT as well as fluid saturation (Bardon and Longeron 1980; Asar and Handy 1988; Haniff and Ali 1990; Munkerud 1995). Danesh et al. (1994) were first to report the improvement of the relative permeability of condensing systems owing to an increase in velocity as well as that caused by a reduction in IFT. This flow behavior, referred to as the positive coupling effect, was subsequently confirmed experimentally by other investigators (Henderson et al. 1995, 1996; Ali et al. 1997; Blom et al. 1997). Jamiolahmady et al. (2000) were first to study the positive coupling effect mechanistically capturing the competition of viscous and capillary forces at the pore level, where there is simultaneous flow of the two phases with intermittent opening and closure of the gas passage by condensate. Jamiolahmady et al. (2003) developed a steady-dynamic network model capturing this flow behavior and predicted some kr values, which were quantitatively comparable with the experimentally measured values.


2021 ◽  
Author(s):  
Brian Chin ◽  
Safdar Ali ◽  
Ashish Mathur ◽  
Colton Barnes ◽  
William Von Gonten

Abstract A big challenge in tight conventional and unconventional rock systems is the lack of representative reservoir deliverability models for movement of water, oil and gas through micro-pore and nano-pore networks. Relative permeability is a key input in modelling these rocks; but due to limitations in core analysis techniques, permeability has become a knob or tuning parameter in reservoir simulation. Current relative permeability measurements on conventional core samples rely on density contrast between oil/water or gas/water on CT (Computed Tomography) scans and recording of effluent volumes to determine relative fluid saturations during the core flooding process. However, tight rocks are characterized by low porosities (< 10 %) and ultra-low permeabilities (< 1 micro-Darcy), that make effective and relative permeability measurements very difficult, time-consuming, and prone to high errors associated with low pore volumes and flow rates. Nuclear Magnetic Resonance (NMR) measurements have been used extensively in the industry to measure fluid porosities, pore size characterization, wettability evaluation, etc. Core NMR scans can provide accurate quantification of pore fluids (oil, gas, water) even in very small quantities, using T2, T1T2 and D-T2 activation sequences. We have developed a novel process to perform experiments that measure effective and relative permeability values on both conventional and tight reservoirs at reservoir conditions while accurately monitoring fluid saturations and fluid fronts in a 12 MHz 3D gradient NMR spectrometer. The experimental process starts by acquiring Micro-CT scans of the cylindrical rock plugs to screen the samples for artifacts or microcracks that may affect permeability measurements. Once the samples are chosen, NMR T2 and T1T2 scans are performed to establish residual fluid saturations in the as-received state. If a liquid effective permeability test is required, the samples are then saturated with the given liquid through a combination of humidification, vacuum-assisted spontaneous imbibition, and saturation under pressure and temperature. After saturation, NMR scans are obtained to verify the volumes of the liquids and determine if the samples have achieved complete saturation. The sample is then loaded into a special core-flooding vessel that is invisible to the NMR spectrometer to minimize interference with the NMR signals from the fluids in the sample. The sample is brought up to reservoir stress and temperature, and the main flowing fluid is injected from one side of the sample while controlling the pressures on the other side of the sample with a back pressure regulator. The saturation front of the injected fluid is continuously monitored using 2D and 3D gradient NMR scans and the volumes of different fluids in the sample are measured using NMR T2 and T1T2 scans. The use of a 12 MHz NMR spectrometer provides very high SNR (signal-to-noise ratio); and clear distinction of water and hydrocarbon signals in the core plug during the entire process. The scanning times are also reduced by orders of magnitude, thereby allowing for more scans to properly capture the saturation front and changes in saturation. Simultaneously, the fluid flowrates and pressures are recorded in order to compute permeability values. The setup is rated to 10,000 psi confining pressures, 9000 psi of pore pressure and a working temperature of up to 100 C. Flowrates as low as 0.00001 cc/min can be recorded. These tests have been done with brine, dead and live crudes, and hydrocarbon gases. The measured relative permeability values have been used successfully in both simulation and production modelling studies in various reservoirs worldwide.


2021 ◽  
Vol 40 (10) ◽  
pp. 716-722
Author(s):  
Yangjun (Kevin) Liu ◽  
Michelle Ellis ◽  
Mohamed El-Toukhy ◽  
Jonathan Hernandez

We present a basin-wide rock-physics analysis of reservoir rocks and fluid properties in Campeche Basin. Reservoir data from discovery wells are analyzed in terms of their relationship between P-wave velocity, density, porosity, clay content, Poisson's ratio (PR), and P-impedance (IP). The fluid properties are computed by using in-situ pressure, temperature, American Petroleum Institute gravity, gas-oil ratio, and volume of gas, oil, and water. Oil- and gas-saturated reservoir sands show strong PR anomalies compared to modeled water sand at equivalent depth. This suggests that PR anomalies can be used as a direct hydrocarbon indicator in the Tertiary sands in Campeche Basin. However, false PR anomalies due to residual gas or oil exist and compose about 30% of the total anomalies. The impact of fluid properties on IP and PR is calibrated using more than 30 discovery wells. These calibrated relationships between fluid properties and PR can be used to guide or constrain amplitude variation with offset inversion for better pore fluid discrimination.


Author(s):  
Shreerang S. Chhatre ◽  
Amy L. Chen ◽  
Muhammed Al-Rukabi ◽  
Daniel W. Berry ◽  
Robert Longoria ◽  
...  

2012 ◽  
Vol 524-527 ◽  
pp. 1615-1619
Author(s):  
Heng Song ◽  
Lun Zhao ◽  
Jian Xin Li ◽  
Kou Shi

The development of gas-oil reservoir with condensate gas is more difficult than pure gas reservoir or oil reservoir. This article gives the example of G oil reservoir the development of gas cap and oil rim. According to the characteristic of the oil developing and the results of numerical simulation, the rules for oil and gas developing and developing time have been defined, by which the recoveries of gas, oil, and condensate oil will reach a significantly high level.


SPE Journal ◽  
2018 ◽  
Vol 23 (06) ◽  
pp. 2394-2408 ◽  
Author(s):  
Sajjad S. Neshat ◽  
Gary A. Pope

Summary New coupled three-phase hysteretic relative permeability and capillary pressure models have been developed and tested for use in compositional reservoir simulators. The new formulation incorporates hysteresis and compositional consistency for both capillary pressure and relative permeability. This approach is completely unaffected by phase flipping and misidentification, which commonly occur in compositional simulations. Instead of using phase labels (gas/oil/solvent/aqueous) to define hysteretic relative permeability and capillary pressure parameters, the parameters are continuously interpolated between reference values using the Gibbs free energy (GFE) of each phase at each timestep. Models that are independent of phase labels have many advantages in terms of both numerical stability and physical consistency. The models integrate and unify relevant physical parameters, including hysteresis and trapping number, into one rigorous algorithm with a minimum number of parameters for application in numerical reservoir simulators. The robustness of the new models is demonstrated with simulations of the miscible water-alternating-gas (WAG) process and solvent stimulation to remove condensate and/or water blocks in both conventional and unconventional formations.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 990
Author(s):  
Mingxing Bai ◽  
Lu Liu ◽  
Chengli Li ◽  
Kaoping Song

The injection of carbon dioxide (CO2) in low-permeable reservoirs can not only mitigate the greenhouse effect on the environment, but also enhance oil and gas recovery (EOR). For numerical simulation work of this process, relative permeability can help predict the capacity for the flow of CO2 throughout the life of the reservoir, and reflect the changes induced by the injected CO2. In this paper, the experimental methods and empirical correlations to determine relative permeability are reviewed and discussed. Specifically, for a low-permeable reservoir in China, a core displacement experiment is performed for both natural and artificial low-permeable cores to study the relative permeability characteristics. The results show that for immiscible CO2 flooding, when considering the threshold pressure and gas slippage, the relative permeability decreases to some extent, and the relative permeability of oil/water does not reduce as much as that of CO2. In miscible flooding, the curves have different shapes for cores with a different permeability. By comparing the relative permeability curves under immiscible and miscible CO2 flooding, it is found that the two-phase span of miscible flooding is wider, and the relative permeability at the gas endpoint becomes larger.


2014 ◽  
Vol 962-965 ◽  
pp. 500-505
Author(s):  
He Hua Wang ◽  
Ling Wu ◽  
Ting Ting Feng ◽  
Yuan Sheng Li ◽  
Jian Yang

Reservoir with gas cap, edge water is complex. And the oil-water and oil-gas interface will seriously influence the performance. Once out of control, gas and water invasion may occur, then oil productivity will fall sharply and oil recovery will become low. In addition, the oil penetrating into gas cap would lead to oil loss. So, the controlling methods are crucial. In this paper, we study the productive characteristics of a certain reservoir with gas cap, edge water and narrow oil ring. For the phenomenon several productive wells appeared gas breakthrough and water invasion after putting into production, this paper puts up a strategy shutting in high gas-oil ratio wells and blocking off gas breakthrough layers that proved effective. At the same time, adjusting oil and gas distribution underground by gas-water alternate also be proved practicable.


Sign in / Sign up

Export Citation Format

Share Document