Use of Real-Time Rig-Sensor Data To Improve Daily Drilling Reporting, Benchmarking, and Planning—A Case Study

2007 ◽  
Vol 22 (03) ◽  
pp. 217-226 ◽  
Author(s):  
Wolfgang Mathis ◽  
Gerhard Thonhauser ◽  
Gerhard Wallnoefer ◽  
Johannes Ettl
Keyword(s):  
Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 405
Author(s):  
Marcos Lupión ◽  
Javier Medina-Quero ◽  
Juan F. Sanjuan ◽  
Pilar M. Ortigosa

Activity Recognition (AR) is an active research topic focused on detecting human actions and behaviours in smart environments. In this work, we present the on-line activity recognition platform DOLARS (Distributed On-line Activity Recognition System) where data from heterogeneous sensors are evaluated in real time, including binary, wearable and location sensors. Different descriptors and metrics from the heterogeneous sensor data are integrated in a common feature vector whose extraction is developed by a sliding window approach under real-time conditions. DOLARS provides a distributed architecture where: (i) stages for processing data in AR are deployed in distributed nodes, (ii) temporal cache modules compute metrics which aggregate sensor data for computing feature vectors in an efficient way; (iii) publish-subscribe models are integrated both to spread data from sensors and orchestrate the nodes (communication and replication) for computing AR and (iv) machine learning algorithms are used to classify and recognize the activities. A successful case study of daily activities recognition developed in the Smart Lab of The University of Almería (UAL) is presented in this paper. Results present an encouraging performance in recognition of sequences of activities and show the need for distributed architectures to achieve real time recognition.


2021 ◽  
Author(s):  
Goedele Verreydt ◽  
Niels Van Putte ◽  
Timothy De Kleyn ◽  
Joris Cool ◽  
Bino Maiheu

<p>Groundwater dynamics play a crucial role in the spreading of a soil and groundwater contamination. However, there is still a big gap in the understanding of the groundwater flow dynamics. Heterogeneities and dynamics are often underestimated and therefore not taken into account. They are of crucial input for successful management and remediation measures. The bulk of the mass of mass often is transported through only a small layer or section within the aquifer and is in cases of seepage into surface water very dependent to rainfall and occurring tidal effects.</p><p> </p><p>This study contains the use of novel real-time iFLUX sensors to map the groundwater flow dynamics over time. The sensors provide real-time data on groundwater flow rate and flow direction. The sensor probes consist of multiple bidirectional flow sensors that are superimposed. The probes can be installed directly in the subsoil, riverbed or monitoring well. The measurement setup is unique as it can perform measurements every second, ideal to map rapid changing flow conditions. The measurement range is between 0,5 and 500 cm per day.</p><p> </p><p>We will present the measurement principles and technical aspects of the sensor, together with two case studies.</p><p> </p><p>The first case study comprises the installation of iFLUX sensors in 4 different monitoring wells in a chlorinated solvent plume to map on the one hand the flow patterns in the plume, and on the other hand the flow dynamics that are influenced by the nearby popular trees. The foreseen remediation concept here is phytoremediation. The sensors were installed for a period of in total 4 weeks. Measurement frequency was 5 minutes. The flow profiles and time series will be presented together with the determined mass fluxes.</p><p> </p><p>A second case study was performed on behalf of the remediation of a canal riverbed. Due to industrial production of tar and carbon black in the past, the soil and groundwater next to the small canal ‘De Lieve’ in Ghent, Belgium, got contaminated with aliphatic and (poly)aromatic hydrocarbons. The groundwater contaminants migrate to the canal, impact the surface water quality and cause an ecological risk. The seepage flow and mass fluxes of contaminants into the surface water were measured with the novel iFLUX streambed sensors, installed directly in the river sediment. A site conceptual model was drawn and dimensioned based on the sensor data. The remediation concept to tackle the inflowing pollution: a hydraulic conductive reactive mat on the riverbed that makes use of the natural draining function of the waterbody, the adsorption capacity of a natural or secondary adsorbent and a future habitat for micro-organisms that biodegrade contaminants. The reactive mats were successfully installed and based on the mass flux calculations a lifespan of at least 10 years is expected for the adsorption material.  </p>


Author(s):  
Xiangxue Zhao ◽  
Shapour Azarm ◽  
Balakumar Balachandran

Online prediction of dynamical system behavior based on a combination of simulation data and sensor measurement data has numerous applications. Examples include predicting safe flight configurations, forecasting storms and wildfire spread, estimating railway track and pipeline health conditions. In such applications, high-fidelity simulations may be used to accurately predict a system’s dynamical behavior offline (“non-real time”). However, due to the computational expense, these simulations have limited usage for online (“real-time”) prediction of a system’s behavior. To remedy this, one possible approach is to allocate a significant portion of the computational effort to obtain data through offline simulations. The obtained offline data can then be combined with online sensor measurements for online estimation of the system’s behavior with comparable accuracy as the off-line, high-fidelity simulation. The main contribution of this paper is in the construction of a fast data-driven spatiotemporal prediction framework that can be used to estimate general parametric dynamical system behavior. This is achieved through three steps. First, high-order singular value decomposition is applied to map high-dimensional offline simulation datasets into a subspace. Second, Gaussian processes are constructed to approximate model parameters in the subspace. Finally, reduced-order particle filtering is used to assimilate sparsely located sensor data to further improve the prediction. The effectiveness of the proposed approach is demonstrated through a case study. In this case study, aeroelastic response data obtained for an aircraft through simulations is integrated with measurement data obtained from a few sparsely located sensors. Through this case study, the authors show that along with dynamic enhancement of the state estimates, one can also realize a reduction in uncertainty of the estimates.


Author(s):  
Jianli Chen ◽  
Tanyel Bulbul ◽  
John E. Taylor ◽  
Guney Olgun
Keyword(s):  

2020 ◽  
Vol 110 (6) ◽  
pp. 2647-2660
Author(s):  
Nikolaj Dahmen ◽  
Roland Hohensinn ◽  
John Clinton

ABSTRACT The 2016 Mw 7.0 Kumamoto earthquake resulted in exceptional datasets of Global Navigation Satellite Systems (GNSS) and seismic data. We explore the spatial similarity of the signals and investigate procedures for combining collocated sensor data. GNSS enables the direct observation of the long-period ground displacements, limited by noise levels in regimes of millimeters to several centimeters. Strong-motion accelerometers are inertial sensors and therefore optimally resolve middle- to high-frequency strong ground motion. The double integration from acceleration to displacement amplifies long-period errors introduced by tilt, rotation, noise, and nonlinear instrument responses and can lead to large nonphysical drifts. For the case study of the Kumamoto earthquake, 39 GNSS stations (1  samples/s) with nearby located strong-motion accelerometers (100  samples/s) are investigated. The GNSS waveforms obtained by precise point positioning under real-time conditions prove to be very similar to the postprocessed result. Real-time GNSS and nearby located accelerometers show consistent observations for periods between ∼3–5 and ∼50–100  s. The matching frequency range is defined by the long-period noise of the accelerometer and the low signal-to-noise ratio (SNR) of GNSS, when it comes to small displacements close to its noise level. Current procedures in fusing the data with a Kalman filter are verified for the dataset of this event. Combined data result in a very broadband waveform that covers the optimal frequency range of each sensor. We explore how to integrate fused processing in a real-time network, including event detection and magnitude estimation. Carrying out a statistical test on the GNSS records allows us to identify seismic events and sort out stations with a low SNR, which would otherwise impair the quality of downstream products. The results of this study reinforce the emerging consensus that there is real benefit to collocation GNSS and strong-motion sensors for the monitoring of moderate-to-large earthquakes.


2006 ◽  
Author(s):  
Wolfgang Mathis ◽  
Gerhard Thonhauser ◽  
Gerhard Wallnoefer ◽  
Johannes Ettl
Keyword(s):  

Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4556
Author(s):  
Ana Lavalle ◽  
Miguel A. Teruel ◽  
Alejandro Maté ◽  
Juan Trujillo

Improving sustainability is a key concern for industrial development. Industry has recently been benefiting from the rise of IoT technologies, leading to improvements in the monitoring and breakdown prevention of industrial equipment. In order to properly achieve this monitoring and prevention, visualization techniques are of paramount importance. However, the visualization of real-time IoT sensor data has always been challenging, especially when such data are originated by sensors of different natures. In order to tackle this issue, we propose a methodology that aims to help users to visually locate and understand the failures that could arise in a production process.This methodology collects, in a guided manner, user goals and the requirements of the production process, analyzes the incoming data from IoT sensors and automatically derives the most suitable visualization type for each context. This approach will help users to identify if the production process is running as well as expected; thus, it will enable them to make the most sustainable decision in each situation. Finally, in order to assess the suitability of our proposal, a case study based on gas turbines for electricity generation is presented.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 50
Author(s):  
Steve H. L. Liang ◽  
Sara Saeedi ◽  
Soroush Ojagh ◽  
Sepehr Honarparvar ◽  
Sina Kiaei ◽  
...  

To safely protect workplaces and the workforce during and after the COVID-19 pandemic, a scalable integrated sensing solution is required in order to offer real-time situational awareness and early warnings for decision-makers. However, an information-based solution for industry reopening is ineffective when the necessary operational information is locked up in disparate real-time data silos. There is a lot of ongoing effort to combat the COVID-19 pandemic using different combinations of low-cost, location-based contact tracing, and sensing technologies. These ad hoc Internet of Things (IoT) solutions for COVID-19 were developed using different data models and protocols without an interoperable way to interconnect these heterogeneous systems and exchange data on people and place interactions. This research aims to design and develop an interoperable Internet of COVID-19 Things (IoCT) architecture that is able to exchange, aggregate, and reuse disparate IoT sensor data sources in order for informed decisions to be made after understanding the real-time risks in workplaces based on person-to-place interactions. The IoCT architecture is based on the Sensor Web paradigm that connects various Things, Sensors, and Datastreams with an indoor geospatial data model. This paper presents a study of what, to the best of our knowledge, is the first real-world integrated implementation of the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) and IndoorGML standards to calculate the risk of COVID-19 online using a workplace reopening case study. The proposed IoCT offers a new open standard-based information model, architecture, methodologies, and software tools that enable the interoperability of disparate COVID-19 monitoring systems with finer spatial-temporal granularity. A workplace cleaning use case was developed in order to demonstrate the capabilities of this proposed IoCT architecture. The implemented IoCT architecture included proximity-based contact tracing, people density sensors, a COVID-19 risky behavior monitoring system, and the contextual building geospatial data.


Sign in / Sign up

Export Citation Format

Share Document