scholarly journals An Interoperable Architecture for the Internet of COVID-19 Things (IoCT) Using Open Geospatial Standards—Case Study: Workplace Reopening

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 50
Author(s):  
Steve H. L. Liang ◽  
Sara Saeedi ◽  
Soroush Ojagh ◽  
Sepehr Honarparvar ◽  
Sina Kiaei ◽  
...  

To safely protect workplaces and the workforce during and after the COVID-19 pandemic, a scalable integrated sensing solution is required in order to offer real-time situational awareness and early warnings for decision-makers. However, an information-based solution for industry reopening is ineffective when the necessary operational information is locked up in disparate real-time data silos. There is a lot of ongoing effort to combat the COVID-19 pandemic using different combinations of low-cost, location-based contact tracing, and sensing technologies. These ad hoc Internet of Things (IoT) solutions for COVID-19 were developed using different data models and protocols without an interoperable way to interconnect these heterogeneous systems and exchange data on people and place interactions. This research aims to design and develop an interoperable Internet of COVID-19 Things (IoCT) architecture that is able to exchange, aggregate, and reuse disparate IoT sensor data sources in order for informed decisions to be made after understanding the real-time risks in workplaces based on person-to-place interactions. The IoCT architecture is based on the Sensor Web paradigm that connects various Things, Sensors, and Datastreams with an indoor geospatial data model. This paper presents a study of what, to the best of our knowledge, is the first real-world integrated implementation of the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) and IndoorGML standards to calculate the risk of COVID-19 online using a workplace reopening case study. The proposed IoCT offers a new open standard-based information model, architecture, methodologies, and software tools that enable the interoperability of disparate COVID-19 monitoring systems with finer spatial-temporal granularity. A workplace cleaning use case was developed in order to demonstrate the capabilities of this proposed IoCT architecture. The implemented IoCT architecture included proximity-based contact tracing, people density sensors, a COVID-19 risky behavior monitoring system, and the contextual building geospatial data.

2021 ◽  
Author(s):  
Goedele Verreydt ◽  
Niels Van Putte ◽  
Timothy De Kleyn ◽  
Joris Cool ◽  
Bino Maiheu

<p>Groundwater dynamics play a crucial role in the spreading of a soil and groundwater contamination. However, there is still a big gap in the understanding of the groundwater flow dynamics. Heterogeneities and dynamics are often underestimated and therefore not taken into account. They are of crucial input for successful management and remediation measures. The bulk of the mass of mass often is transported through only a small layer or section within the aquifer and is in cases of seepage into surface water very dependent to rainfall and occurring tidal effects.</p><p> </p><p>This study contains the use of novel real-time iFLUX sensors to map the groundwater flow dynamics over time. The sensors provide real-time data on groundwater flow rate and flow direction. The sensor probes consist of multiple bidirectional flow sensors that are superimposed. The probes can be installed directly in the subsoil, riverbed or monitoring well. The measurement setup is unique as it can perform measurements every second, ideal to map rapid changing flow conditions. The measurement range is between 0,5 and 500 cm per day.</p><p> </p><p>We will present the measurement principles and technical aspects of the sensor, together with two case studies.</p><p> </p><p>The first case study comprises the installation of iFLUX sensors in 4 different monitoring wells in a chlorinated solvent plume to map on the one hand the flow patterns in the plume, and on the other hand the flow dynamics that are influenced by the nearby popular trees. The foreseen remediation concept here is phytoremediation. The sensors were installed for a period of in total 4 weeks. Measurement frequency was 5 minutes. The flow profiles and time series will be presented together with the determined mass fluxes.</p><p> </p><p>A second case study was performed on behalf of the remediation of a canal riverbed. Due to industrial production of tar and carbon black in the past, the soil and groundwater next to the small canal ‘De Lieve’ in Ghent, Belgium, got contaminated with aliphatic and (poly)aromatic hydrocarbons. The groundwater contaminants migrate to the canal, impact the surface water quality and cause an ecological risk. The seepage flow and mass fluxes of contaminants into the surface water were measured with the novel iFLUX streambed sensors, installed directly in the river sediment. A site conceptual model was drawn and dimensioned based on the sensor data. The remediation concept to tackle the inflowing pollution: a hydraulic conductive reactive mat on the riverbed that makes use of the natural draining function of the waterbody, the adsorption capacity of a natural or secondary adsorbent and a future habitat for micro-organisms that biodegrade contaminants. The reactive mats were successfully installed and based on the mass flux calculations a lifespan of at least 10 years is expected for the adsorption material.  </p>


2020 ◽  
Vol 10 (17) ◽  
pp. 5882
Author(s):  
Federico Desimoni ◽  
Sergio Ilarri ◽  
Laura Po ◽  
Federica Rollo ◽  
Raquel Trillo-Lado

Modern cities face pressing problems with transportation systems including, but not limited to, traffic congestion, safety, health, and pollution. To tackle them, public administrations have implemented roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. In the case of traffic sensor data not only the real-time data are essential, but also historical values need to be preserved and published. When real-time and historical data of smart cities become available, everyone can join an evidence-based debate on the city’s future evolution. The TRAFAIR (Understanding Traffic Flows to Improve Air Quality) project seeks to understand how traffic affects urban air quality. The project develops a platform to provide real-time and predicted values on air quality in several cities in Europe, encompassing tasks such as the deployment of low-cost air quality sensors, data collection and integration, modeling and prediction, the publication of open data, and the development of applications for end-users and public administrations. This paper explicitly focuses on the modeling and semantic annotation of traffic data. We present the tools and techniques used in the project and validate our strategies for data modeling and its semantic enrichment over two cities: Modena (Italy) and Zaragoza (Spain). An experimental evaluation shows that our approach to publish Linked Data is effective.


2019 ◽  
Vol 22 (3) ◽  
pp. 343-347
Author(s):  
Chi Doan Thien Nguyen ◽  
Hien Thi To

Introduction: Continuous monitoring provides real-time data which is helpful for measuring air quality; however, these systems are often very expensive, especially for developing countries such as Vietnam. The use of low-cost sensors for monitoring air pollution is a new approach in Vietnam and this study assesses the utility of low-cost, light-scattering-based, particulate sensors for measuring PM2.5 concentrations in Ho Chi Minh City. Methods: The low-cost sensors were compared with both a Beta attenuation monitor (BAM) reference method and a gravimetric method during the rainy season period of October to December 2018. Results: The results showed that there was a very strong correlation between two low-cost sensors (R = 0.97, slope = 1.0), and that the sensor precision varied from 0 to 21.4% with a mean of 3.1%. Both one-minute averaged data and one-hour averaged data showed similar correlations between sensors and BAM (R2 = 0.62 and 0.69, respectively), while 24-hour averaged data showed excellent agreement (R2 = 0.95, slope = 1.05). In addition, we also found a strong correlation between those instruments and a gravimetric method using 24-hour averaged data. A linear regression was used to calibrate the 24-hour averaged sensor data and, once calibrated, the bias dropped to zero. Conclusion: These results show that low-cost sensors can be used for daily measurements of PM2.5 concentrations in Ho Chi Minh City. The effect of air conditions, such as temperature and humidity, should be conducted. Moreover, technical methods to improve time resolution of lowcost sensors need to be developed and applied in order to provide real-time measurements at an inexpensive cost.  


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 405
Author(s):  
Marcos Lupión ◽  
Javier Medina-Quero ◽  
Juan F. Sanjuan ◽  
Pilar M. Ortigosa

Activity Recognition (AR) is an active research topic focused on detecting human actions and behaviours in smart environments. In this work, we present the on-line activity recognition platform DOLARS (Distributed On-line Activity Recognition System) where data from heterogeneous sensors are evaluated in real time, including binary, wearable and location sensors. Different descriptors and metrics from the heterogeneous sensor data are integrated in a common feature vector whose extraction is developed by a sliding window approach under real-time conditions. DOLARS provides a distributed architecture where: (i) stages for processing data in AR are deployed in distributed nodes, (ii) temporal cache modules compute metrics which aggregate sensor data for computing feature vectors in an efficient way; (iii) publish-subscribe models are integrated both to spread data from sensors and orchestrate the nodes (communication and replication) for computing AR and (iv) machine learning algorithms are used to classify and recognize the activities. A successful case study of daily activities recognition developed in the Smart Lab of The University of Almería (UAL) is presented in this paper. Results present an encouraging performance in recognition of sequences of activities and show the need for distributed architectures to achieve real time recognition.


2021 ◽  
Vol 13 (8) ◽  
pp. 4496
Author(s):  
Giuseppe Desogus ◽  
Emanuela Quaquero ◽  
Giulia Rubiu ◽  
Gianluca Gatto ◽  
Cristian Perra

The low accessibility to the information regarding buildings current performances causes deep difficulties in planning appropriate interventions. Internet of Things (IoT) sensors make available a high quantity of data on energy consumptions and indoor conditions of an existing building that can drive the choice of energy retrofit interventions. Moreover, the current developments in the topic of the digital twin are leading the diffusion of Building Information Modeling (BIM) methods and tools that can provide valid support to manage all data and information for the retrofit process. This paper shows the aim and the findings of research focused on testing the integrated use of BIM methodology and IoT systems. A common data platform for the visualization of building indoor conditions (e.g., temperature, luminance etc.) and of energy consumption parameters was carried out. This platform, tested on a case study located in Italy, is developed with the integration of low-cost IoT sensors and the Revit model. To obtain a dynamic and automated exchange of data between the sensors and the BIM model, the Revit software was integrated with the Dynamo visual programming platform and with a specific Application Programming Interface (API). It is an easy and straightforward tool that can provide building managers with real-time data and information about the energy consumption and the indoor conditions of buildings, but also allows for viewing of the historical sensor data table and creating graphical historical sensor data. Furthermore, the BIM model allows the management of other useful information about the building, such as dimensional data, functions, characteristics of the components of the building, maintenance status etc., which are essential for a much more conscious, effective and accurate management of the building and for defining the most suitable retrofit scenarios.


Author(s):  
Huijun Wu ◽  
Xiaoyao Qian ◽  
Aleks Shulman ◽  
Kanishk Karanawat ◽  
Tushar Singh ◽  
...  

2021 ◽  
Author(s):  
Ryan Daher ◽  
Nesma Aldash

Abstract With the global push towards Industry 4.0, a number of leading companies and organizations have invested heavily in Industrial Internet of Things (IIOT's) and acquired a massive amount of data. But data without proper analysis that converts it into actionable insights is just more information. With the advancement of Data analytics, machine learning, artificial intelligence, numerous methods can be used to better extract value out of the amassed data from various IIOTs and leverage the analysis to better make decisions impacting efficiency, productivity, optimization and safety. This paper focuses on two case studies- one from upstream and one from downstream using RTLS (Real Time Location Services). Two types of challenges were present: the first one being the identification of the location of all personnel on site in case of emergency and ensuring that all have mustered in a timely fashion hence reducing the time to muster and lessening the risks of Leaving someone behind. The second challenge being the identification of personnel and various contractors, the time they entered in productive or nonproductive areas and time it took to complete various tasks within their crafts while on the job hence accounting for efficiency, productivity and cost reduction. In both case studies, advanced analytics were used, and data collection issues were encountered highlighting the need for further and seamless integration between data, analytics and intelligence is needed. Achievements from both cases were visible increase in productivity and efficiency along with the heightened safety awareness hence lowering the overall risk and liability of the operation. Novel/Additive Information: The results presented from both studies have highlighted other potential applications of the IIOT and its related analytics. Pertinent to COVID-19, new application of such approach was tested in contact tracing identifying workers who could have tested positive and tracing back to personnel that have been in close proximity and contact therefore reducing the spread of COVID. Other application of the IIOT and its related analytics has also been tested in crane, forklift and heavy machinery proximity alert reducing the risk of accidents.


Author(s):  
Xiangxue Zhao ◽  
Shapour Azarm ◽  
Balakumar Balachandran

Online prediction of dynamical system behavior based on a combination of simulation data and sensor measurement data has numerous applications. Examples include predicting safe flight configurations, forecasting storms and wildfire spread, estimating railway track and pipeline health conditions. In such applications, high-fidelity simulations may be used to accurately predict a system’s dynamical behavior offline (“non-real time”). However, due to the computational expense, these simulations have limited usage for online (“real-time”) prediction of a system’s behavior. To remedy this, one possible approach is to allocate a significant portion of the computational effort to obtain data through offline simulations. The obtained offline data can then be combined with online sensor measurements for online estimation of the system’s behavior with comparable accuracy as the off-line, high-fidelity simulation. The main contribution of this paper is in the construction of a fast data-driven spatiotemporal prediction framework that can be used to estimate general parametric dynamical system behavior. This is achieved through three steps. First, high-order singular value decomposition is applied to map high-dimensional offline simulation datasets into a subspace. Second, Gaussian processes are constructed to approximate model parameters in the subspace. Finally, reduced-order particle filtering is used to assimilate sparsely located sensor data to further improve the prediction. The effectiveness of the proposed approach is demonstrated through a case study. In this case study, aeroelastic response data obtained for an aircraft through simulations is integrated with measurement data obtained from a few sparsely located sensors. Through this case study, the authors show that along with dynamic enhancement of the state estimates, one can also realize a reduction in uncertainty of the estimates.


2018 ◽  
Vol 210 ◽  
pp. 03008
Author(s):  
Aparajita Das ◽  
Manash Pratim Sarma ◽  
Kandarpa Kumar Sarma ◽  
Nikos Mastorakis

This paper describes the design of an operative prototype based on Internet of Things (IoT) concepts for real time monitoring of various environmental conditions using certain commonly available and low cost sensors. The various environmental conditions such as temperature, humidity, air pollution, sun light intensity and rain are continuously monitored, processed and controlled by an Arduino Uno microcontroller board with the help of several sensors. Captured data are broadcasted through internet with an ESP8266 Wi-Fi module. The projected system delivers sensors data to an API called ThingSpeak over an HTTP protocol and allows storing of data. The proposed system works well and it shows reliability. The prototype has been used to monitor and analyse real time data using graphical information of the environment.


Sign in / Sign up

Export Citation Format

Share Document