scholarly journals Genome-wide identification, expression profiles and regulatory network of MAPK cascade gene family in barley

2019 ◽  
Author(s):  
Licao Cui ◽  
Guang Yang ◽  
Jali Yan ◽  
Yan Pan ◽  
Xiaojun Nie

Abstract Background Mitogen-activated protein kinase (MAPK) cascade is a conserved and universal signal transduction module in organisms. Although it has been well characterized in many plants, no systematic analysis has been conducted in barley. Results Here, we identified 20 MAPKs, 6 MAPKKs and 156 MAPKKKs in barley through a genome-wide search against the updated reference genome. Then, phylogenetic relationship, gene structure and conserved protein motifs organization of them were systematically analyzed and results supported the predictions. Gene duplication analysis revealed that segmental and tandem duplication events contributed to the expansion of barley MAPK cascade genes and the duplicated gene pairs were found to undergone strong purifying selection. Expression profiles of them were further investigated in different organs and under diverse abiotic stresses using the available 173 RNA-seq datasets, and then the tissue-specific and stress-responsive candidates were found. Finally, co-expression regulatory network of MAPK cascade genes was constructed by WGCNA tool, resulting in a complicated network composed of a total of 72 branches containing 46 HvMAPK cascade genes and 46 miRNAs. Conclusion This study provides the targets for further functional study and also contribute to better understand the MAPK cascade regulatory network in barley and beyond.

BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Licao Cui ◽  
Guang Yang ◽  
Jiali Yan ◽  
Yan Pan ◽  
Xiaojun Nie

Abstract Background Mitogen-activated protein kinase (MAPK) cascade is a conserved and universal signal transduction module in organisms. Although it has been well characterized in many plants, no systematic analysis has been conducted in barley. Results Here, we identified 20 MAPKs, 6 MAPKKs and 156 MAPKKKs in barley through a genome-wide search against the updated reference genome. Then, phylogenetic relationship, gene structure and conserved protein motifs organization of them were systematically analyzed and results supported the predictions. Gene duplication analysis revealed that segmental and tandem duplication events contributed to the expansion of barley MAPK cascade genes and the duplicated gene pairs were found to undergone strong purifying selection. Expression profiles of them were further investigated in different organs and under diverse abiotic stresses using the available 173 RNA-seq datasets, and then the tissue-specific and stress-responsive candidates were found. Finally, co-expression regulatory network of MAPK cascade genes was constructed by WGCNA tool, resulting in a complicated network composed of a total of 72 branches containing 46 HvMAPK cascade genes and 46 miRNAs. Conclusion This study provides the targets for further functional study and also contribute to better understand the MAPK cascade regulatory network in barley and beyond.


2019 ◽  
Author(s):  
Licao Cui ◽  
Guang Yang ◽  
Jali Yan ◽  
Yan Pan ◽  
Xiaojun Nie

Abstract Background Mitogen-activated protein kinase (MAPK) cascade is a conserved and universal signal transduction module in organisms. Although it has been well characterized in many plants, no systematic analysis has been conducted in barley. Results Here, we identified 20 MAPKs, 6 MAPKKs and 156 MAPKKKs in barley through a genome-wide search against the updated reference genome. Then, phylogenetic relationship, gene structure and conserved protein motifs organization of them were systematically analyzed and results supported the predictions. Gene duplication analysis revealed that segmental and tandem duplication events contributed to the expansion of barley MAPK cascade genes and the duplicated gene pairs were found to undergone strong purifying selection. Expression profiles of them were further investigated in different organs and under diverse abiotic stresses using the available 173 RNA-seq datasets, and then the tissue-specific and stress-responsive candidates were found. Finally, co-expression regulatory network of MAPK cascade genes was constructed by WGCNA tool, resulting in a complicated network composed of a total of 72 branches containing 46 HvMAPK cascade genes and 46 miRNAs. Conclusion This study provides the targets for further functional study and also contribute to better understand the MAPK cascade regulatory network in barley and beyond.


2019 ◽  
Author(s):  
Licao Cui ◽  
Guang Yang ◽  
Jali Yan ◽  
Yan Pan ◽  
Xiaojun Nie

Abstract Background Mitogen-activated protein kinase (MAPK) cascade is a conserved and universal signal transduction module in organism. Although it has been well characterized in many plants, no systematic analysis has been conducted in the model cereal crop barley. Results Here, we identified 20 MAPKs, 6 MAPKKs and 156 MAPKKKs through a genome-wide search method using the latest published barley genomic data. Phylogenetic analysis assigned all the MAPK cascade genes into three groups in accordance to MAPK, MAPKK and MAPKKK family. Gene duplication revealed that segmental and tandem duplication events contributed to the expansion of barley MAPK cascade genes and the duplicated gene pairs were found to undergone strong purifying selection. Expression profiles of the HvMAPK, HvMAPKK and HvMAPKKKs were then investigated in different organs and under diverse stresses using the available 132 RNA-seq datasets, and then the tissue-specific and stress-responsive ones were found. Finally, co-expression regulatory network of MAPK cascade genes was constructed by WGCNA tool, resulting in a complicated network composed of a total of 72 branches containing 46 HvMAPK cascade genes and 46 miRNAs. Conclusion This study provides the candidates for further functional studies and also contribute to better understand the MAPK cascade regulatory network in barley and beyond.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Archita Chatterjee ◽  
Abhirup Paul ◽  
G. Meher Unnati ◽  
Ruchika Rajput ◽  
Trisha Biswas ◽  
...  

Abstract Background Mitogen Activated Protein Kinase (MAPK) cascade is a fundamental pathway in organisms for signal transduction. Though it is well characterized in various plants, there is no systematic study of this cascade in tea. Result In this study, 5 genes of Mitogen Activated Protein Kinase Kinase (MKK) and 16 genes of Mitogen Activated Protein Kinase (MPK) in Camellia sinensis were found through a genome-wide search taking Arabidopsis thaliana as the reference genome. Also, phylogenetic relationships along with structural analysis which includes gene structure, location as well as protein conserved motifs and domains, were systematically examined and further, predictions were validated by the results. The plant species taken for comparative study clearly displayed segmental duplication, which was a significant candidate for MAPK cascade expansion. Also, functional interaction was carried out in C. sinensis based on the orthologous genes in Arabidopsis. The expression profiles linked to various stress treatments revealed wide involvement of MAPK and MAPKK genes from Tea in response to various abiotic factors. In addition, the expression of these genes was analysed in various tissues. Conclusion This study provides the targets for further comprehensive identification, functional study, and also contributed for a better understanding of the MAPK cascade regulatory network in C. sinensis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Abhirup Paul ◽  
Archita Chatterjee ◽  
Shreya Subrahmanya ◽  
Guoxin Shen ◽  
Neelam Mishra

Salt stress affects the plant growth and productivity worldwide and NHX is one of those genes that are well known to improve salt tolerance in transgenic plants. It is well characterized in several plants, such as Arabidopsis thaliana and cotton; however, not much is known about NHXs in tea plant. In the present study, NHX genes of tea were obtained through a genome-wide search using A. thaliana as reference genome. Out of the 9 NHX genes in tea, 7 genes were localized in vacuole while the remaining 2 genes were localized in the endoplasmic reticulum (ER; CsNHX8) and plasma membrane (PM; CsNHX9), respectively. Furthermore, phylogenetic relationships along with structural analysis which includes gene structure, location, and protein-conserved motifs and domains were systematically examined and further, predictions were validated by the expression analysis. The dN/dS values show that the majority of tea NHX genes is subjected to strong purifying selection under the course of evolution. Also, functional interaction was carried out in Camellia sinensis based on the orthologous genes in A. thaliana. The expression profiles linked to various stress treatments revealed wide involvement of NHX genes from tea in response to various abiotic factors. This study provides the targets for further comprehensive identification, functional study, and also contributed for a better understanding of the NHX regulatory network in C. sinensis.


2021 ◽  
Author(s):  
Abhirup Paul ◽  
Archita Chatterjee ◽  
shreya Subrahmanya ◽  
Guoxin Shen ◽  
Neelam Mishra

Abstract Background Salt stress affects the plant growth and productivity worldwide and NHX is one of those genes that are well known to improve salt tolerance in transgenic plants. It is well characterized in several plants such as Arabidopsis and cotton however not much is known about NHXs in tea plant. Result In the present study, NHX genes of tea were obtained through a genome wide search using Arabidopsis thaliana as reference genome. Out of the 9 NHX genes in tea, 7 genes were localized in vacuole while the remaining 2 genes were localized in the endoplasmic reticulum (ER) (TEA014468.1) and plasma membrane (PM) (TEA006997.1) respectively. Furthermore, phylogenetic relationships along with structural analysis which includes gene structure, location as well as protein conserved motifs and domains, were systematically examined and further, predictions were validated by the expression analysis. The dN/dS values show that the majority of tea NHX genes are subjected to strong purifying selection under the course of evolution. Also, functional interaction was carried out in C. sinensis based on the orthologous genes in Arabidopsis. The expression profiles linked to various stress treatments revealed wide involvement of NHX genes from tea in response to various abiotic factors. Conclusion This study provides the targets for further comprehensive identification, functional study, and also contributed for a better understanding of the NHX regulatory network in C. sinensis.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258657
Author(s):  
Abhirup Paul ◽  
Anurag P. Srivastava ◽  
Shreya Subrahmanya ◽  
Guoxin Shen ◽  
Neelam Mishra

Mitogen activated protein kinase kinase kinase (MAPKKK) form the upstream component of MAPK cascade. It is well characterized in several plants such as Arabidopsis and rice however the knowledge about MAPKKKs in tea plant is largely unknown. In the present study, MAPKKK genes of tea were obtained through a genome wide search using Arabidopsis thaliana as the reference genome. Among 59 candidate MAPKKK genes in tea, 17 genes were MEKK-like, 31 genes were Raf-like and 11 genes were ZIK- like. Additionally, phylogenetic relationships were established along with structural analysis, which includes gene structure, its location as well as conserved motifs, cis-acting regulatory elements and functional domain signatures that were systematically examined. Also, on the basis of one orthologous gene found between tea and Arabidopsis, functional interaction was carried out in C. sinensis based on an Arabidopsis association model. The expressional profiles indicated major involvement of MAPKKK genes from tea in response to various abiotic stress factors. Taken together, this study provides the targets for additional inclusive identification, functional study, and provides comprehensive knowledge for a better understanding of the MAPKKK cascade regulatory network in C. sinensis.


Genome ◽  
2019 ◽  
Vol 62 (9) ◽  
pp. 609-622 ◽  
Author(s):  
Weidong Zhu ◽  
Wei Tan ◽  
Qiulin Li ◽  
Xiugui Chen ◽  
Junjuan Wang ◽  
...  

Mitogen-activated protein kinase kinase kinases (MAPKKKs) are important components of MAPK cascades, which have different functions during developmental processes and stress responses. To date, there has been no systematic investigation of this gene family in the diploid cotton Gossypium arboreum L. In this study, a genome-wide survey was performed that identified 78 MAPKKK genes in G. arboreum. Phylogenetic analysis classified these genes into three subgroups: 14 belonged to ZIK, 20 to MEKK, and 44 to Raf. Chromosome location, phylogeny, and the conserved protein motifs of the MAPKKK gene family in G. arboreum were analyzed. The MAPKKK genes had a scattered genomic distribution across 13 chromosomes. The members in the same subfamily shared similar conserved motifs. The MAPKKK expression patterns were analyzed in mature leaves, stems, roots, and at different ovule developmental stages, as well as under salt and drought stresses. Transcriptome analysis showed that 76 MAPKKK genes had different transcript accumulation patterns in the tested tissues and 38 MAPKKK genes were differentially expressed in response to salt and drought stresses. These results lay the foundation for understanding the complex mechanisms behind MAPKKK-mediated developmental processes and abiotic stress-signaling transduction pathways in cotton.


2020 ◽  
Vol 21 (19) ◽  
pp. 7180
Author(s):  
Hongfeng Wang ◽  
Hongjiao Jiang ◽  
Yiteng Xu ◽  
Yan Wang ◽  
Lin Zhu ◽  
...  

Gibberellins (GAs), a class of phytohormones, act as an essential natural regulator of plant growth and development. Many studies have shown that GA is related to rhizobial infection and nodule organogenesis in legume species. However, thus far, GA metabolism and signaling components are largely unknown in the model legume Medicago truncatula. In this study, a genome-wide analysis of GA metabolism and signaling genes was carried out. In total 29 components, including 8 MtGA20ox genes, 2 MtGA3ox genes, 13 MtGA2ox genes, 3 MtGID1 genes, and 3 MtDELLA genes were identified in M. truncatula genome. Expression profiles revealed that most members of MtGAox, MtGID1, and MtDELLA showed tissue-specific expression patterns. In addition, the GA biosynthesis and deactivation genes displayed a feedback regulation on GA treatment, respectively. Yeast two-hybrid assays showed that all the three MtGID1s interacted with MtDELLA1 and MtDELLA2, suggesting that the MtGID1s are functional GA receptors. More importantly, M. truncatula exhibited increased plant height and biomass by ectopic expression of the MtGA20ox1, suggesting that enhanced GA response has the potential for forage improvement.


2021 ◽  
Author(s):  
Haitao Xing ◽  
Yusong Jiang ◽  
Xiaoling Long ◽  
Xiaoli Wu ◽  
Yun Ren ◽  
...  

Abstract Background:AP2/ERF transcription factors perform indispensable functions in various biological processes, such as plant growth, development, biotic and abiotic stresses responses. The AP2/ERF transcription factor family has been identified in many plants, and several AP2/ERF transcription factors from Arabidopsis (Arabidopsis thaliana) have been functionally characterized. However, little research has been conducted on the AP2/ERF genes of ginger (Zingiber officinale), which is an important edible and medicinal horticultural plant. The recently published whole genome sequence of ginger allowed us to study the tissue and expression profiles of AP2/ERF genes in ginger on a genome-wide basis.Results:In this study, 163 AP2/ERF genes of ginger (ZoAP2/ERF) were identified and renamed according to the chromosomal distribution of the ZoAP2/ERF genes. According to the number conserved domains and gene structure, the AP2/ERF genes were divided into three subfamilies by phylogenetic analysis, namely, AP2 (35 members), ERF (125 members) and RAV (3 members). A total of 10 motifs were detected in ginger AP2/ERF genes, and some of the unique motifs were found to be important for the function of ZoAP2/ERF genes.Conclusion:A comprehensive analysis of AP2/ERF gene expression patterns in different tissues and rhizome development stages by transcriptom sequence and quantitative real-time PCR (qRT-PCR) showed that they played an important role in the growth and development of ginger, and genes that might regulate rhizome and flower development were preliminarily identified. This systematic analysis establishes a foundation for further studies of the functional characteristics of ZoAP2/ERF genes and improvement of ginger.


Sign in / Sign up

Export Citation Format

Share Document