scholarly journals Genome-wide investigation of the AP2/ERF gene family in  ginger: evolution and expression profiles during rhizome and inflorescence development

Author(s):  
Haitao Xing ◽  
Yusong Jiang ◽  
Xiaoling Long ◽  
Xiaoli Wu ◽  
Yun Ren ◽  
...  

Abstract Background:AP2/ERF transcription factors perform indispensable functions in various biological processes, such as plant growth, development, biotic and abiotic stresses responses. The AP2/ERF transcription factor family has been identified in many plants, and several AP2/ERF transcription factors from Arabidopsis (Arabidopsis thaliana) have been functionally characterized. However, little research has been conducted on the AP2/ERF genes of ginger (Zingiber officinale), which is an important edible and medicinal horticultural plant. The recently published whole genome sequence of ginger allowed us to study the tissue and expression profiles of AP2/ERF genes in ginger on a genome-wide basis.Results:In this study, 163 AP2/ERF genes of ginger (ZoAP2/ERF) were identified and renamed according to the chromosomal distribution of the ZoAP2/ERF genes. According to the number conserved domains and gene structure, the AP2/ERF genes were divided into three subfamilies by phylogenetic analysis, namely, AP2 (35 members), ERF (125 members) and RAV (3 members). A total of 10 motifs were detected in ginger AP2/ERF genes, and some of the unique motifs were found to be important for the function of ZoAP2/ERF genes.Conclusion:A comprehensive analysis of AP2/ERF gene expression patterns in different tissues and rhizome development stages by transcriptom sequence and quantitative real-time PCR (qRT-PCR) showed that they played an important role in the growth and development of ginger, and genes that might regulate rhizome and flower development were preliminarily identified. This systematic analysis establishes a foundation for further studies of the functional characteristics of ZoAP2/ERF genes and improvement of ginger.

2020 ◽  
Vol 21 (18) ◽  
pp. 6594
Author(s):  
Shuting Zhang ◽  
Qin Zhou ◽  
Feng Chen ◽  
Lan Wu ◽  
Baojun Liu ◽  
...  

The plant-specific TCP transcription factors are well-characterized in both monocots and dicots, which have been implicated in multiple aspects of plant biological processes such as leaf morphogenesis and senescence, lateral branching, flower development and hormone crosstalk. However, no systematic analysis of the petunia TCP gene family has been described. In this work, a total of 66 petunia TCP genes (32 PaTCP genes in P. axillaris and 34 PiTCP genes in P. inflata) were identified. Subsequently, a systematic analysis of 32 PaTCP genes was performed. The phylogenetic analysis combined with structural analysis clearly distinguished the 32 PaTCP proteins into two classes—class Ι and class Ⅱ. Class Ⅱ was further divided into two subclades, namely, the CIN-TCP subclade and the CYC/TB1 subclade. Plenty of cis-acting elements responsible for plant growth and development, phytohormone and/or stress responses were identified in the promoter of PaTCPs. Distinct spatial expression patterns were determined among PaTCP genes, suggesting that these genes may have diverse regulatory roles in plant growth development. Furthermore, differential temporal expression patterns were observed between the large- and small-flowered petunia lines for most PaTCP genes, suggesting that these genes are likely to be related to petal development and/or petal size in petunia. The spatiotemporal expression profiles and promoter analysis of PaTCPs indicated that these genes play important roles in petunia diverse developmental processes that may work via multiple hormone pathways. Moreover, three PaTCP-YFP fusion proteins were detected in nuclei through subcellular localization analysis. This is the first comprehensive analysis of the petunia TCP gene family on a genome-wide scale, which provides the basis for further functional characterization of this gene family in petunia.


2020 ◽  
Vol 21 (19) ◽  
pp. 7180
Author(s):  
Hongfeng Wang ◽  
Hongjiao Jiang ◽  
Yiteng Xu ◽  
Yan Wang ◽  
Lin Zhu ◽  
...  

Gibberellins (GAs), a class of phytohormones, act as an essential natural regulator of plant growth and development. Many studies have shown that GA is related to rhizobial infection and nodule organogenesis in legume species. However, thus far, GA metabolism and signaling components are largely unknown in the model legume Medicago truncatula. In this study, a genome-wide analysis of GA metabolism and signaling genes was carried out. In total 29 components, including 8 MtGA20ox genes, 2 MtGA3ox genes, 13 MtGA2ox genes, 3 MtGID1 genes, and 3 MtDELLA genes were identified in M. truncatula genome. Expression profiles revealed that most members of MtGAox, MtGID1, and MtDELLA showed tissue-specific expression patterns. In addition, the GA biosynthesis and deactivation genes displayed a feedback regulation on GA treatment, respectively. Yeast two-hybrid assays showed that all the three MtGID1s interacted with MtDELLA1 and MtDELLA2, suggesting that the MtGID1s are functional GA receptors. More importantly, M. truncatula exhibited increased plant height and biomass by ectopic expression of the MtGA20ox1, suggesting that enhanced GA response has the potential for forage improvement.


2020 ◽  
Author(s):  
Xi-Yang Wang ◽  
Jie Song ◽  
Jia-Hui Xing ◽  
Jun-Feng Liang ◽  
Bi-ying Ke

Abstract Background: WRKY proteins comprise a large family of transcription factors that play vital roles in many aspects of physiological processes and adaption to environment. However, little information was available about the WRKY genes in teak (Tectona grandis). The recent release of the whole-genome sequence of teak allowed us to perform a genome-wide investigation into the organization and expression profiling of teak WRKY genes. Results: In the present study, 102 teak WRKY (TgWRKY) genes were identified and renamed as per their positions on chromosome and scaffolds. According to their structural and phylogenetic analysis, the 102 TgWRKYs were further classified into three main groups with seceral subgroups. The segmental duplication event played a major role in the expansion of teak WRKY gene family and three WGD events were inferred. Expression profiles derived from transcriptome data exhibited distinct expression patterns of TgWRKY genes in various tissues and inresponse to different abiotic stress.Conclusions: 102 TgWRKY genes were identified in teak and the structure of their encoded proteins, their evolutionary characteristics and expression patterns were examined in this study. This study generated an important resource that will provide helpful information for further exploration of the TgWRKY genes role in the regulatory mechanism in response to abiotic stresses.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jian Li ◽  
Keyun Lin ◽  
Shuai Zhang ◽  
Jian Wu ◽  
Yujie Fang ◽  
...  

Myeloblastosis (MYB)-related transcription factors comprise a large subfamily of the MYB family. They play significant roles in plant development and in stress responses. However, MYB-related proteins have not been comprehensively investigated in rapeseed (Brassica napus L.). In the present study, a genome-wide analysis of MYB-related transcription factors was performed in rapeseed. We identified 251 Brassica napus MYB (BnMYB)-related members, which were divided phylogenetically into five clades. Evolutionary analysis suggested that whole genome duplication and segmental duplication events have played a significant role in the expansion of BnMYB-related gene family. Selective pressure of BnMYB-related genes was estimated using the Ka/Ks ratio, which indicated that BnMYB-related genes underwent strong purifying selection during evolution. In silico analysis showed that various development-associated, phytohormone-responsive, and stress-related cis-acting regulatory elements were enriched in the promoter regions of BnMYB-related genes. Furthermore, MYB-related genes with tissue or organ-specific, stress-responsive expression patterns were identified in B. napus based on temporospatial and abiotic stress expression profiles. Among the stress-responsive MYB-related genes, BnMRD107 was strongly induced by drought stress, and was therefore selected for functional study. Rapeseed seedlings overexpressing BnMRD107 showed improved resistance to osmotic stress. Our findings not only lay a foundation for further functional characterization of BnMYB-related genes, but also provide valuable clues to determine candidate genes for future genetic improvement of B. napus.


2019 ◽  
Author(s):  
Licao Cui ◽  
Guang Yang ◽  
Jali Yan ◽  
Yan Pan ◽  
Xiaojun Nie

Abstract Background Mitogen-activated protein kinase (MAPK) cascade is a conserved and universal signal transduction module in organism. Although it has been well characterized in many plants, no systematic analysis has been conducted in the model cereal crop barley. Results Here, we identified 20 MAPKs, 6 MAPKKs and 156 MAPKKKs through a genome-wide search method using the latest published barley genomic data. Phylogenetic analysis assigned all the MAPK cascade genes into three groups in accordance to MAPK, MAPKK and MAPKKK family. Gene duplication revealed that segmental and tandem duplication events contributed to the expansion of barley MAPK cascade genes and the duplicated gene pairs were found to undergone strong purifying selection. Expression profiles of the HvMAPK, HvMAPKK and HvMAPKKKs were then investigated in different organs and under diverse stresses using the available 132 RNA-seq datasets, and then the tissue-specific and stress-responsive ones were found. Finally, co-expression regulatory network of MAPK cascade genes was constructed by WGCNA tool, resulting in a complicated network composed of a total of 72 branches containing 46 HvMAPK cascade genes and 46 miRNAs. Conclusion This study provides the candidates for further functional studies and also contribute to better understand the MAPK cascade regulatory network in barley and beyond.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Khadiza Khatun ◽  
Sourav Debnath ◽  
Arif Hasan Khan Robin ◽  
Antt Htet Wai ◽  
Ujjal Kumar Nath ◽  
...  

Abstract Background CONSTANS-like (CO-like, COL) are putative zinc-finger transcription factors known to play vital role in various plant biological processes such as control of flowering time, regulation of plant growth and development and responses to stresses. However, no systematic analysis of COL family gene regarding the plant development and stress response has been previously performed in any solanaceous crop. In the present study, a comprehensive genome-wide analysis of COL family genes in petunia has been conducted to figure out their roles in development of organs and stress response. Results A total of 33 COL genes, 15 PaCOL genes in P. axillaris and 18 PiCOL genes in P. inflata, were identified in petunia. Subsequently, a genome-wide systematic analysis was performed in 15 PaCOL genes. Considering the domain composition and sequence similarity the 15 PaCOL and 18 PiCOL genes were phylogenetically classified into three groups those are conserved among the flowering plants. Moreover, all of the 15 PaCOL proteins were localized in nucleus. Furthermore, differential expression patterns of PaCOL genes were observed at different developmental stages of petunia. Additionally, transcript expression of 15 PaCOL genes under various abiotic and phytohormone treatments showed their response against stresses. Moreover, several cis-elements related to stress, light-responsive, hormone signaling were also detected in different PaCOL genes. Conclusion The phylogenetic clustering, organ specific expression pattern and stress responsive expression profile of conserved petunia COL genes indicating their involvement in plant growth and development and stress response mechanism. This work provide a significant foundation for understanding the biological roles of petunia COL genes in plant growth, development and in stress response.


2019 ◽  
Author(s):  
Licao Cui ◽  
Guang Yang ◽  
Jali Yan ◽  
Yan Pan ◽  
Xiaojun Nie

Abstract Background Mitogen-activated protein kinase (MAPK) cascade is a conserved and universal signal transduction module in organisms. Although it has been well characterized in many plants, no systematic analysis has been conducted in barley. Results Here, we identified 20 MAPKs, 6 MAPKKs and 156 MAPKKKs in barley through a genome-wide search against the updated reference genome. Then, phylogenetic relationship, gene structure and conserved protein motifs organization of them were systematically analyzed and results supported the predictions. Gene duplication analysis revealed that segmental and tandem duplication events contributed to the expansion of barley MAPK cascade genes and the duplicated gene pairs were found to undergone strong purifying selection. Expression profiles of them were further investigated in different organs and under diverse abiotic stresses using the available 173 RNA-seq datasets, and then the tissue-specific and stress-responsive candidates were found. Finally, co-expression regulatory network of MAPK cascade genes was constructed by WGCNA tool, resulting in a complicated network composed of a total of 72 branches containing 46 HvMAPK cascade genes and 46 miRNAs. Conclusion This study provides the targets for further functional study and also contribute to better understand the MAPK cascade regulatory network in barley and beyond.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1855
Author(s):  
Dan Luo ◽  
Ziqi Jia ◽  
Yong Cheng ◽  
Xiling Zou ◽  
Yan Lv

The β-amylase (BAM) gene family, known for their property of catalytic ability to hydrolyze starch to maltose units, has been recognized to play critical roles in metabolism and gene regulation. To date, BAM genes have not been characterized in oil crops. In this study, the genome-wide survey revealed the identification of 30 BnaBAM genes in Brassica napus L. (B. napus L.), 11 BraBAM genes in Brassica rapa L. (B. rapa L.), and 20 BoBAM genes in Brassica oleracea L. (B. oleracea L.), which were divided into four subfamilies according to the sequence similarity and phylogenetic relationships. All the BAM genes identified in the allotetraploid genome of B. napus, as well as two parental-related species (B. rapa and B. oleracea), were analyzed for the gene structures, chromosomal distribution and collinearity. The sequence alignment of the core glucosyl-hydrolase domains was further applied, demonstrating six candidate β-amylase (BnaBAM1, BnaBAM3.1-3.4 and BnaBAM5) and 25 β-amylase-like proteins. The current results also showed that 30 BnaBAMs, 11 BraBAMs and 17 BoBAMs exhibited uneven distribution on chromosomes of Brassica L. crops. The similar structural compositions of BAM genes in the same subfamily suggested that they were relatively conserved. Abiotic stresses pose one of the significant constraints to plant growth and productivity worldwide. Thus, the responsiveness of BnaBAM genes under abiotic stresses was analyzed in B. napus. The expression patterns revealed a stress-responsive behaviour of all members, of which BnaBAM3s were more prominent. These differential expression patterns suggested an intricate regulation of BnaBAMs elicited by environmental stimuli. Altogether, the present study provides first insights into the BAM gene family of Brassica crops, which lays the foundation for investigating the roles of stress-responsive BnaBAM candidates in B. napus.


Sign in / Sign up

Export Citation Format

Share Document