scholarly journals Genome-wide association study (GWAS) for morphological and yield-related traits in an oil palm hybrid (Elaeis oleifera x Elaeis guineensis) population

2019 ◽  
Author(s):  
Jaime Osorio ◽  
Gina Garzón ◽  
Paola Delgadillo ◽  
Silvio Bastidas ◽  
Leidy Moreno ◽  
...  

Abstract Background The genus Elaeis has two species of economic importance for the oil palm agroindustry: Elaeis oleifera (O), native to the Americas, and Elaeis guineensis (G), native to Africa. This work provides to our knowledge, the first association mapping study in an interspecific OxG oil palm population, which shows tolerance to pests and diseases, high oil quality, and acceptable fruit bunch production. Results Using genotyping-by-sequencing (GBS), we identified a total of 3,776 single nucleotide polymorphisms (SNPs) that were used to perform a genome-wide association analysis (GWAS) in 378 OxG hybrid population for 10 agronomic traits. Twelve genomic regions (SNPs) were located near candidate genes implicated in multiple functional categories, such as tissue growth, cellular trafficking, and physiological processes. Conclusions We provide new insights on genomic regions that mapped on candidate genes involved in plant architecture and yield. These potential candidate genes need to be confirmed for future targeted functional analyses. Associated markers to the traits of interest may be valuable resources for the development of marker-assisted selection in oil palm breeding. Keywords: Association mapping, Elaeis guineensis , Elaeis oleifera , genotyping-by-sequencing, plant architecture, yield.

2019 ◽  
Author(s):  
Jaime Osorio ◽  
Gina Garzón ◽  
Paola Delgadillo ◽  
Silvio Bastidas ◽  
Leidy Moreno ◽  
...  

Abstract Abstract Background The genus Elaeis has two species of economic importance for the oil palm agroindustry: Elaeis oleifera (O), native to the Americas, and Elaeis guineensis (G), native to Africa. The work presented herein provides, to our knowledge, the first association mapping study in an interspecific OxG hybrid population of oil palm which presents tolerance to pests and diseases, high oil quality, and acceptable fruit bunch production. Results Using genotyping-by-sequencing (GBS), we identified a total of 3,776 single nucleotide polymorphisms (SNPs) that were used to perform a genome-wide association analysis (GWAS) in 378 OxG hybrids for 10 agronomic traits. Twelve genomic regions were located near candidate genes implicated in multiple functional categories, such as tissue growth, cellular trafficking, and physiological processes. Conclusions We provide new insights on candidate genes that mapped on genomic regions involved in plant architecture and yield; however, these potential candidate genes need to be confirmed for future targeted functional analysis. The associated markers may be valuable resources for the development of marker-assisted selection in oil palm breeding. Keywords: Association mapping, Elaeis guineensis, Elaeis oleifera, genotyping-by-sequencing, plant architecture, yield.


2019 ◽  
Author(s):  
Jaime Osorio ◽  
Gina Garzón ◽  
Paola Delgadillo ◽  
Silvio Bastidas ◽  
Leidy Moreno ◽  
...  

Abstract Background The genus Elaeis has two species of economic importance for the oil palm agroindustry: Elaeis oleifera (O), native to the Americas, and Elaeis guineensis (G), native to Africa. This work provides to our knowledge, the first association mapping study in an interspecific OxG oil palm population, which shows tolerance to pests and diseases, high oil quality, and acceptable fruit bunch production. Results Using genotyping-by-sequencing (GBS), we identified a total of 3,776 single nucleotide polymorphisms (SNPs) that were used to perform a genome-wide association analysis (GWAS) in 378 OxG hybrid population for 10 agronomic traits. Twelve genomic regions (SNPs) were located near candidate genes implicated in multiple functional categories, such as tissue growth, cellular trafficking, and physiological processes. Conclusions We provide new insights on genomic regions that mapped on candidate genes involved in plant architecture and yield. These potential candidate genes need to be confirmed for future targeted functional analyses. Associated markers to the traits of interest may be valuable resources for the development of marker-assisted selection in oil palm breeding. Keywords: Association mapping, Elaeis guineensis , Elaeis oleifera , genotyping-by-sequencing, plant architecture, yield.


2019 ◽  
Author(s):  
Jaime Osorio ◽  
Gina Garzón ◽  
Paola Delgadillo ◽  
Silvio Bastidas ◽  
Leidy Moreno ◽  
...  

Abstract Background The genus Elaeis has two species of economic importance for the oil palm agroindustry: Elaeis oleifera (O), native to the Americas, and Elaeis guineensis (G), native to Africa. The breeding program in Colombia relies on interspecific OxG crossing populations with tolerance to pests and diseases, high oil quality, and acceptable fruit bunch production. The identification of loci associated to morphological and yield-related traits and the dissection of their genetic architecture will provide essential insights for oil palm breeding strategies. Results The genotypes of 471 oil palms, including 62 E. oleifera (O), 31 E. guineensis (G) and 378 OxG samples were analyzed in this study. A total of 3,776 single nucleotide polymorphisms (SNP) were detected across the 16 oil palm chromosomes using the genotyping-by-sequencing (GBS) technique. The genetic variation and population structure analyses grouped the samples into two clades according to the parental relatedness. A genome wide association analysis (GWAS) was conducting using the OxG hybrid population, resulting in 12 SNPs significantly associated with ten different morphological and yield-related traits. Conclusions The work presented herein provides to our knowledge the first association mapping study in an interspecific OxG hybrid population of oil palm. We provide new insights on candidate genes involved in tissue development and plant architecture associated to traits such as: rachis length, trunk diameter, bunch number, and bunch weight. The genes identified in our analysis are putative candidates for future targeted functional analysis. They are valuable resources for the development of marker-assisted selection in oil palm breeding. Keywords: Association mapping, Elaeis guineensis, Elaeis oleifera, genotyping-by-sequencing, plant architecture, yield.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Jaime A. Osorio-Guarín ◽  
Gina A. Garzón-Martínez ◽  
Paola Delgadillo-Duran ◽  
Silvio Bastidas ◽  
Leidy P. Moreno ◽  
...  

Abstract Background The genus Elaeis has two species of economic importance for the oil palm agroindustry: Elaeis oleifera (O), native to the Americas, and Elaeis guineensis (G), native to Africa. This work provides to our knowledge, the first association mapping study in an interspecific OxG oil palm population, which shows tolerance to pests and diseases, high oil quality, and acceptable fruit bunch production. Results Using genotyping-by-sequencing (GBS), we identified a total of 3776 single nucleotide polymorphisms (SNPs) that were used to perform a genome-wide association analysis (GWAS) in 378 OxG hybrid population for 10 agronomic traits. Twelve genomic regions (SNPs) were located near candidate genes implicated in multiple functional categories, such as tissue growth, cellular trafficking, and physiological processes. Conclusions We provide new insights on genomic regions that mapped on candidate genes involved in plant architecture and yield. These potential candidate genes need to be confirmed for future targeted functional analyses. Associated markers to the traits of interest may be valuable resources for the development of marker-assisted selection in oil palm breeding.


Genes ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 418
Author(s):  
Fan Shao ◽  
Jing Liu ◽  
Mengyuan Ren ◽  
Junying Li ◽  
Haigang Bao ◽  
...  

Dwarfism is a condition defined by low harvest weight in fish, but also results in strange body figures which may have potential for the selective breeding of new ornamental fish strains. The objectives of this study are to reveal the physiological causes of dwarfism and identify the genetic loci controlling this trait in the white sailfin molly. Skeletons of dwarf and normal sailfin mollies were observed by X-ray radioscopy and skeletal staining. Genome-wide association studies based on genotyping-by-sequencing (n = 184) were used to map candidate genomic regions associated with the dwarfism trait. Quantitative real-time PCR was performed to determine the expression level of candidate genes in normal (n = 8) and dwarf (n = 8) sailfin mollies. We found that the dwarf sailfin molly has a short and dysplastic spine in comparison to the normal fish. Two regions, located at NW_015112742.1 and NW_015113621.1, were significantly associated with the dwarfism trait. The expression level of three candidate genes, ADAMTS like 1, Larp7 and PPP3CA, were significantly different between the dwarf and normal sailfin mollies in the hepatopancreas, with PPP3CA also showing significant differences in the vertebrae and Larp7 showing significant differences in the muscle. This study identified genomic regions and candidate genes associated with the dwarfism trait in the white sailfin molly and would provide a reference to determine dwarf-causing variations.


2021 ◽  
Vol 29 (2) ◽  
pp. 97-114
Author(s):  
Heri Adriwan Siregar ◽  
Edy Suprianto ◽  
Sujadi Sujadi ◽  
Hernawan Y Rahmadi ◽  
Mohamad Arif ◽  
...  

The oil palm breeding program for the species Elaeis guineensis and the backcross Elaeis oleifera is running slowly because oil palm is an annual plant. Therefore, it is necessary to have an alternative approach that can accelerate the oil palm breeding program. The SNP (single nucleotide polymorphism) genome-wide approach was then used to study the association between 18 phenotypes of bunch component in oil palm germplasm of E. oleifera from Suriname and Brazil Coari, some interspecific hybrids and some elite progeny of E. guineensis. The genotyping by sequencing (GBS) analysis produced a total of 459 million or approximately 798 thousand reads per sample and 3,252 SNPs were eligible for 456 genotypes. Using various association models, eleven normalized phenotypic data showed significant associations with 29 SNPs. Based on the annotations, 17 SNPs were related to genes wtih certain biological functions. Three SNPs were found to be at the exon of a gene, namely SNP4416, SNP349 and SNP3865, while the other 15 SNPs were at the intragenic to a gene. Four SNPs are common SNPs in phenotypes C16:0 and C18:1 as weel as in C20 0 and C20:1. This research shows the potential of SNPs that can be used as an alternative approach to E. oleifera backcross breeding, although further research is needed for validation purposes.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Leila Nayyeripasand ◽  
Ghasem Ali Garoosi ◽  
Asadollah Ahmadikhah

Abstract Background Rice is considered as a salt-sensitive plant, particularly at early vegetative stage, and its production is suffered from salinity due to expansion of salt affected land in areas under cultivation. Hence, significant increase of rice productivity on salinized lands is really necessary. Today genome-wide association study (GWAS) is a method of choice for fine mapping of QTLs involved in plant responses to abiotic stresses including salinity stress at early vegetative stage. In this study using > 33,000 SNP markers we identified rice genomic regions associated to early stage salinity tolerance. Eight salinity-related traits including shoot length (SL), root length (RL), root dry weight (RDW), root fresh weight (RFW), shoot fresh weight (SFW), shoot dry weight (SDW), relative water content (RWC) and TW, and 4 derived traits including SL-R, RL-R, RDW-R and RFW-R in a diverse panel of rice were evaluated under salinity (100 mM NaCl) and normal conditions in growth chamber. Genome-wide association study (GWAS) was applied based on MLM(+Q + K) model. Results Under stress conditions 151 trait-marker associations were identified that were scattered on 10 chromosomes of rice that arranged in 29 genomic regions. A genomic region on chromosome 1 (11.26 Mbp) was identified which co-located with a known QTL region SalTol1 for salinity tolerance at vegetative stage. A candidate gene (Os01g0304100) was identified in this region which encodes a cation chloride cotransporter. Furthermore, on this chromosome two other candidate genes, Os01g0624700 (24.95 Mbp) and Os01g0812000 (34.51 Mbp), were identified that encode a WRKY transcription factor (WRKY 12) and a transcriptional activator of gibberellin-dependent alpha-amylase expression (GAMyb), respectively. Also, a narrow interval on the same chromosome (40.79–42.98 Mbp) carries 12 candidate genes, some of them were not so far reported for salinity tolerance at seedling stage. Two of more interesting genes are Os01g0966000 and Os01g0963000, encoding a plasma membrane (PM) H+-ATPase and a peroxidase BP1 protein. A candidate gene was identified on chromosome 2 (Os02g0730300 at 30.4 Mbp) encoding a high affinity K+ transporter (HAK). On chromosome 6 a DnaJ-encoding gene and pseudouridine synthase gene were identified. Two novel genes on chromosome 8 including the ABI/VP1 transcription factor and retinoblastoma-related protein (RBR), and 3 novel genes on chromosome 11 including a Lox, F-box and Na+/H+ antiporter, were also identified. Conclusion Known or novel candidate genes in this research were identified that can be used for improvement of salinity tolerance in molecular breeding programmes of rice. Further study and identification of effective genes on salinity tolerance by the use of candidate gene-association analysis can help to precisely uncover the mechanisms of salinity tolerance at molecular level. A time dependent relationship between salt tolerance and expression level of candidate genes could be recognized.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1897
Author(s):  
Endale G. Tafesse ◽  
Krishna K. Gali ◽  
V. B. Reddy Lachagari ◽  
Rosalind Bueckert ◽  
Thomas D. Warkentin

Heat and drought, individually or in combination, limit pea productivity. Fortunately, substantial genetic diversity exists in pea germplasm for traits related to abiotic stress resistance. Understanding the genetic basis of resistance could accelerate the development of stress-adaptive cultivars. We conducted a genome-wide association study (GWAS) in pea on six stress-adaptive traits with the aim to detect the genetic regions controlling these traits. One hundred and thirty-five genetically diverse pea accessions were phenotyped in field studies across three or five environments under stress and control conditions. To determine marker trait associations (MTAs), a total of 16,877 valuable single nucleotide polymorphisms (SNPs) were used in association analysis. Association mapping detected 15 MTAs that were significantly (p ≤ 0.0005) associated with the six stress-adaptive traits averaged across all environments and consistent in multiple individual environments. The identified MTAs were four for lamina wax, three for petiole wax, three for stem thickness, two for the flowering duration, one for the normalized difference vegetation index (NDVI), and two for the normalized pigment and chlorophyll index (NPCI). Sixteen candidate genes were identified within a 15 kb distance from either side of the markers. The detected MTAs and candidate genes have prospective use towards selecting stress-hardy pea cultivars in marker-assisted selection.


Sign in / Sign up

Export Citation Format

Share Document