scholarly journals Genomic-wide analysis and prediction of genes involved in biosynthesis of polysaccharide and bioactive secondary metabolites in high-temperature-tolerance of wild Flammulina filiformis

2019 ◽  
Author(s):  
Juan Chen ◽  
Jia-Mei Li ◽  
Yan-Jing Tang ◽  
Ke Ma ◽  
Bing Li ◽  
...  

Abstract Background: Flammulina filiformis (=Asian “F.velutipes”) is a popular commercial edible mushroom. Many bioactive compounds such as polysaccharides and sesquiterpenoids with medicinal effects have been isolated and identified, but their biosynthesis and regulation in molecular level is unclear. In this study, we sequenced the genome of the wild strain F. filiformis Liu 355, predicated the biosynthetic gene clusters (BGCs) and profiled these genes expression between wild and cultivar strains and among different development stages of the wild strain of F. filiformis by a comparative transcriptomic analysis. Results: The results revealed that the genome of the F. filiformis was 35.01 M bp in length and annotated with 10396 gene models. 12 putative terpeniod gene clusters were predicted, 12 sesquiterpenes synthase genes belonged to four different groups and two type I PKS (polyketide synthase) gene clusters were identified from F. filiformis genome. The gene number related terpeniod biosynthesis is higher in wild strain (119 genes) than cultivar strain (81 genes) and most of them are up regulated in primodium and fruiting body of the wild strain, while PKS genes are usually up-regulated in the mycelium of wild strain. Moreover, genes encoding UDP-glucose pyrophosphorylase and UDP-glucose dehydrogenase involved in polysaccharide biosynthesis have relative high transcripts both in mycelium and fruiting bodies of F. filiformis. Conclusions: We identified candidate genes involved in the biosynthesis of polysaccharide and terpenoid bioactive compounds and profiled these genes expression during the development of F. filiformis. This study expends our knowledge for understanding the biology of F. filiformis and provides valuable data for elucidating the secondary metabolism regulation of the special strain of F. filiformis.

2019 ◽  
Author(s):  
Juan Chen ◽  
Jia-Mei Li ◽  
Yan-Jing Tang ◽  
Ke Ma ◽  
Bing Li ◽  
...  

Abstract Background: Flammulina filiformis (=Asian “F.velutipes”) is a popular commercial edible mushroom. Many bioactive compounds with medicinal effects, such as polysaccharides and sesquiterpenoids, have been isolated and identified from F. filiformis, but their biosynthesis and regulation at the molecular level remains unclear. In this study, we sequenced the genome of the wild strain F. filiformis Liu355, predicated its the biosynthetic gene clusters (BGCs) and profiled the expression of these genes in wild and cultivar strains and in different developmental stages of the wild F. filiformis strain by a comparative transcriptomic analysis. Results: We found that the genome of the F. filiformis was 35.01 M bp in length and harbored 10396 gene models. Thirteen putative terpenoid gene clusters were predicted and 12 sesquiterpene synthase genes belonging to four different groups and two type I polyketide synthase gene clusters were identified in the F. filiformis genome. The number of genes related to terpenoid biosynthesis was higher in the wild strain (119 genes) than in the cultivar strain (81 genes). Most terpenoid biosynthesis genes were upregulated in the primordium and fruiting body of the wild strain, while the polyketide synthase genes were generally upregulated in the mycelium of the wild strain. Moreover, genes encoding UDP-glucose pyrophosphorylase and UDP-glucose dehydrogenase, which are involved in polysaccharide biosynthesis, had relatively high transcript levels both in the mycelium and fruiting body of the wild F. filiformis strain. Conclusions: F. filiformis is enriched in a number of gene clusters involved in the biosynthesis of polysaccharides and terpenoid bioactive compounds and these genes usually display differential expression between wild and cultivar strains, even in different developmental stages. This study expands our knowledge of the biology of F. filiformis and provides valuable data for elucidating the regulation of secondary metabolites in this unique F. filiformis strain.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Juan Chen ◽  
Jia-Mei Li ◽  
Yan-Jing Tang ◽  
Ke Ma ◽  
Bing Li ◽  
...  

Abstract Background Flammulina filiformis (previously known as Asian F. velutipes) is a popular commercial edible mushroom. Many bioactive compounds with medicinal effects, such as polysaccharides and sesquiterpenoids, have been isolated and identified from F. filiformis, but their biosynthesis and regulation at the molecular level remains unclear. In this study, we sequenced the genome of the wild strain F. filiformis Liu355, predicted its biosynthetic gene clusters (BGCs) and profiled the expression of these genes in wild and cultivar strains and in different developmental stages of the wild F. filiformis strain by a comparative transcriptomic analysis. Results We found that the genome of the F. filiformis was 35.01 Mb in length and harbored 10,396 gene models. Thirteen putative terpenoid gene clusters were predicted and 12 sesquiterpene synthase genes belonging to four different groups and two type I polyketide synthase gene clusters were identified in the F. filiformis genome. The number of genes related to terpenoid biosynthesis was higher in the wild strain (119 genes) than in the cultivar strain (81 genes). Most terpenoid biosynthesis genes were upregulated in the primordium and fruiting body of the wild strain, while the polyketide synthase genes were generally upregulated in the mycelium of the wild strain. Moreover, genes encoding UDP-glucose pyrophosphorylase and UDP-glucose dehydrogenase, which are involved in polysaccharide biosynthesis, had relatively high transcript levels both in the mycelium and fruiting body of the wild F. filiformis strain. Conclusions F. filiformis is enriched in a number of gene clusters involved in the biosynthesis of polysaccharides and terpenoid bioactive compounds and these genes usually display differential expression between wild and cultivar strains, even in different developmental stages. This study expands our knowledge of the biology of F. filiformis and provides valuable data for elucidating the regulation of secondary metabolites in this unique F. filiformis strain.


2008 ◽  
Vol 74 (24) ◽  
pp. 7607-7612 ◽  
Author(s):  
Edyta Szewczyk ◽  
Yi-Ming Chiang ◽  
C. Elizabeth Oakley ◽  
Ashley D. Davidson ◽  
Clay C. C. Wang ◽  
...  

ABSTRACT The sequencing of Aspergillus genomes has revealed that the products of a large number of secondary metabolism pathways have not yet been identified. This is probably because many secondary metabolite gene clusters are not expressed under normal laboratory culture conditions. It is, therefore, important to discover conditions or regulatory factors that can induce the expression of these genes. We report that the deletion of sumO, the gene that encodes the small ubiquitin-like protein SUMO in A. nidulans, caused a dramatic increase in the production of the secondary metabolite asperthecin and a decrease in the synthesis of austinol/dehydroaustinol and sterigmatocystin. The overproduction of asperthecin in the sumO deletion mutant has allowed us, through a series of targeted deletions, to identify the genes required for asperthecin synthesis. The asperthecin biosynthesis genes are clustered and include genes encoding an iterative type I polyketide synthase, a hydrolase, and a monooxygenase. The identification of these genes allows us to propose a biosynthetic pathway for asperthecin.


Author(s):  
Aileen Bayot Custodio ◽  
Edwin Plata Alcantara

A phage P1-derived artificial chromosome (PAC) library was constructed from genomic DNA of Streptomyces sp. PCS3-D2. Polymerase chain reaction (PCR) screening of the PAC library revealed two clones, PAC16D and P222O, which were positively identified to harbor polyketide synthase (PKS) Type I and PKS Type III gene clusters, respectively. Restriction enzyme digestion showed that PAC16D and PAC222O contained a 130 kb and a 140 kb insert, respectively. Results of sequencing and bioinformatics analyses revealed that PAC16D comprised of a full-length PKS type I bafilomycin gene cluster while PAC222O harbored truncated siderophore and putative gene clusters as well as a complete PKS III biosynthetic gene cluster. The PKS III gene cluster had three genes similar to alkyl resorcinol biosynthetic genes, however majority of the novel gene cluster had little similarity to known PKS Type III gene clusters. The successful cloning and identification of these gene clusters from Streptomyces sp. PCS3-D2 serve as the jump off point to further genetic manipulation in order to produce the insecticidal natural product in a heterologous host.


BMC Genomics ◽  
2014 ◽  
Vol 15 (1) ◽  
pp. 323 ◽  
Author(s):  
Hisayuki Komaki ◽  
Natsuko Ichikawa ◽  
Akira Hosoyama ◽  
Azusa Takahashi-Nakaguchi ◽  
Tetsuhiro Matsuzawa ◽  
...  

2010 ◽  
Vol 76 (10) ◽  
pp. 3283-3292 ◽  
Author(s):  
Yunlong He ◽  
Yuhui Sun ◽  
Tiangang Liu ◽  
Xiufen Zhou ◽  
Linquan Bai ◽  
...  

ABSTRACT Five meilingmycins, A to E, with A as the major component, were isolated from Streptomyces nanchangensis NS3226. Through nuclear magnetic resonance (NMR) characterization, meilingmycins A to E proved to be identical to reported milbemycins α11, α13, α14, β1, and β9, respectively. Sequencing of a previously cloned 103-kb region identified three modular type I polyketide synthase genes putatively encoding the last 11 elongation steps, three modification proteins, and one transcriptional regulatory protein for meilingmycin biosynthesis. However, the expected loading module and the first two elongation modules were missing. In meilingmycin, the presence of a methyl group at C-24 and a hydroxyl group at C-25 suggests that the elongation module 1 contains a methylmalonyl-coenzyme A (CoA)-specific acyltransferase (ATp) domain and a ketoreductase (KR) domain. Based on the conserved motifs of the ATp and KR domains, a pair of primers was designed for PCR amplification, and a 1.40-kb expected fragment was amplified, whose sequence shows significant homology with the elongation module 1 of the aveA1-encoded enzyme AVES1. A polyketide synthase (PKS) gene encoding one loading and two elongation modules, with a downstream C-5-O-methyltransferase gene, meiD, was subsequently localized 55 kb apart from the previously sequenced region, and its deletion abolishes meilingmycin production. A series of deletions within the 55-kb intercluster region rules out its involvement in meilingmycin biosynthesis. Furthermore, gene deletion of meiD eliminates meilingmycins D and E, with methyls at C-5. Our work provides a more specific strategy for the cloning of modular type I PKS gene clusters. The cloning of the meilingmycin gene clusters paves the way for its pathway engineering.


Author(s):  
Delaney L. Miller ◽  
Eric A. Smith ◽  
Irene L. G. Newton

Fungi are the leading cause of insect disease, contributing to the decline of wild and managed populations1,2. For ecologically and economically critical species, such as the European honey bee (Apis mellifera), the presence and prevalence of fungal pathogens can have far reaching consequences, endangering other species and threatening food security3,4,5. Our ability to address fungal epidemics and opportunistic infections is currently hampered by the limited number of antifungal therapies6,7. Novel antifungal treatments are frequently of bacterial origin and produced by defensive symbionts (bacteria that associate with an animal/plant host and protect against natural enemies 89. Here we examined the capacity of a honey bee-associated bacterium, Bombella apis, to suppress the growth of fungal pathogens and ultimately protect bee brood (larvae and pupae) from infection. Our results showed that strains of B. apis inhibit the growth of two insect fungal pathogens, Beauveria bassiana and Aspergillus flavus, in vitro. This phenotype was recapitulated in vivo; bee brood supplemented with B. apis were significantly less likely to be infected by A. flavus. Additionally, the presence of B. apis reduced sporulation of A. flavus in the few bees that were infected. Analyses of biosynthetic gene clusters across B. apis strains suggest antifungal production via a Type I polyketide synthase. Secreted metabolites from B. apis alone were sufficient to suppress fungal growth, supporting this hypothesis. Together, these data suggest that B. apis protects bee brood from fungal infection by the secretion of an antifungal metabolite. On the basis of this discovery, new antifungal treatments could be developed to mitigate honey bee colony losses, and, in the future, could address fungal epidemics in other species.


2020 ◽  
Vol 48 (8) ◽  
pp. e48-e48 ◽  
Author(s):  
Peng Xu ◽  
Cyrus Modavi ◽  
Benjamin Demaree ◽  
Frederick Twigg ◽  
Benjamin Liang ◽  
...  

Abstract Microbial biosynthetic gene clusters are a valuable source of bioactive molecules. However, because they typically represent a small fraction of genomic material in most metagenomic samples, it remains challenging to deeply sequence them. We present an approach to isolate and sequence gene clusters in metagenomic samples using microfluidic automated plasmid library enrichment. Our approach provides deep coverage of the target gene cluster, facilitating reassembly. We demonstrate the approach by isolating and sequencing type I polyketide synthase gene clusters from an Antarctic soil metagenome. Our method promotes the discovery of functional-related genes and biosynthetic pathways.


Sign in / Sign up

Export Citation Format

Share Document