scholarly journals Expansion of sweet taste receptor genes in grass carp (Ctenopharyngodon idellus) coincided with vegetarian adaptation

2019 ◽  
Author(s):  
Xiao-Chen Yuan ◽  
Xu-Fang Liang ◽  
Wen-Jing Cai ◽  
Shan He ◽  
Wen-Jie Guo ◽  
...  

Abstract Background Taste is fundamental to diet selection in vertebrates. Genetic basis of sweet taste receptor in the shaping of food habits has been extensively studied in mammals and birds, but scarcely studied in fishes. Grass carp is an excellent model for studying vegetarian adaptation, as it exhibits food habit transition from carnivory to herbivory. Results We identified six sweet taste receptors (gcT1R2A-F) in grass carp. The four gcT1R2s (gcT1R2C-F) have been suggested to be evolved from and paralogous to the two original gcT1R2s (gcT1R2A and gcT1R2B). All gcT1R2s were expressed in taste organs and mediated glucose- or fructose-induced intracellular calcium signaling, revealing they were functional. Cells co-transfected with six gcT1R2s/gcT1R3 showed a greater response to glucose or fructose than those transfected alone, while a lower response to plant specific fructose than those co-transfected with the new four gcT1R2s/gcT1R3. Moreover, food habit transition from carnivory to herbivory in grass carp was accompanied by increased gene expression of certain gcT1R2s. Conclusions We suggested that the gene expansion of T1R2 in grass carp was an adaptive strategy to accommodate the change in food environment. Moreover, the selected gene expression of gcT1R2s might drive the food habit transition from carnivory to herbivory in grass carp. This study provided some evolutional and physiological clues for the formation of herbivory in grass carp.

2019 ◽  
Author(s):  
Xiao-Chen Yuan ◽  
Xu-Fang Liang ◽  
Wen-Jing Cai ◽  
Shan He ◽  
Wen-Jie Guo ◽  
...  

Abstract Background: Taste is fundamental to diet selection in vertebrates. Genetic basis of sweet taste receptor in the shaping of food habits has been extensively studied in mammals and birds, but scarcely studied in fishes. Grass carp is an excellent model for studying vegetarian adaptation, as it exhibits food habit transition from carnivory to herbivory. Results: We identified six sweet taste receptors (gcT1R2A-F) in grass carp. The four gcT1R2s (gcT1R2C-F) have been suggested to be evolved from and paralogous to the two original gcT1R2s (gcT1R2A and gcT1R2B). All gcT1R2s were expressed in taste organs and mediated glucose-, fructose- or arginine-induced intracellular calcium signaling, revealing they were functional. In addition, grass carp was performed to prefer fructose to glucose under a behavioral experiment. Parallelly, compared with gcT1R2A-F/gcT1R3 co-transfected cells, gcT1R2C-F/gcT1R3 co-transfected cells showed a higher response to plant-specific fructose. Moreover, food habit transition from carnivory to herbivory in grass carp was accompanied by increased gene expression of certain gcT1R2s. Conclusions: We suggested that the gene expansion of T1R2s in grass carp was an adaptive strategy to accommodate the change in food environment. Moreover, the selected gene expression of gcT1R2s might drive the food habit transition from carnivory to herbivory in grass carp. This study provided some evolutional and physiological clues for the formation of herbivory in grass carp.


2020 ◽  
Author(s):  
Xiao-Chen Yuan ◽  
Xu-Fang Liang ◽  
Wen-Jing Cai ◽  
Shan He ◽  
Wen-Jie Guo ◽  
...  

Abstract Background: Taste is fundamental to diet selection in vertebrates. Genetic basis of sweet taste receptor in the shaping of food habits has been extensively studied in mammals and birds, but scarcely studied in fishes. Grass carp is an excellent model for studying vegetarian adaptation, as it exhibits food habit transition from carnivory to herbivory. Results: We identified six sweet taste receptors (gcT1R2A-F) in grass carp. The four gcT1R2s (gcT1R2C-F) have been suggested to be evolved from and paralogous to the two original gcT1R2s (gcT1R2A and gcT1R2B). All gcT1R2s were expressed in taste organs and mediated glucose-, fructose- or arginine-induced intracellular calcium signaling, revealing they were functional. In addition, grass carp was performed to prefer fructose to glucose under a behavioral experiment. Parallelly, compared with gcT1R2A-F/gcT1R3 co-transfected cells, gcT1R2C-F/gcT1R3 co-transfected cells showed a higher response to plant-specific fructose. Moreover, food habit transition from carnivory to herbivory in grass carp was accompanied by increased gene expression of certain gcT1R2s.Conclusions: We suggested that the gene expansion of T1R2s in grass carp was an adaptive strategy to accommodate the change in food environment. Moreover, the selected gene expression of gcT1R2s might drive the food habit transition from carnivory to herbivory in grass carp. This study provided some evolutional and physiological clues for the formation of herbivory in grass carp.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Menizibeya O. Welcome ◽  
Nikos E. Mastorakis ◽  
Vladimir A. Pereverzev

Sweet taste receptors are transmembrane protein network specialized in the transmission of information from special “sweet” molecules into the intracellular domain. These receptors can sense the taste of a range of molecules and transmit the information downstream to several acceptors, modulate cell specific functions and metabolism, and mediate cell-to-cell coupling through paracrine mechanism. Recent reports indicate that sweet taste receptors are widely distributed in the body and serves specific function relative to their localization. Due to their pleiotropic signaling properties and multisubstrate ligand affinity, sweet taste receptors are able to cooperatively bind multiple substances and mediate signaling by other receptors. Based on increasing evidence about the role of these receptors in the initiation and control of absorption and metabolism, and the pivotal role of metabolic (glucose) regulation in the central nervous system functioning, we propose a possible implication of sweet taste receptor signaling in modulating cognitive functioning.


2002 ◽  
Vol 74 (7) ◽  
pp. 1159-1165 ◽  
Author(s):  
Kunio Isono ◽  
Kohei Ueno ◽  
Masayuki Ohta ◽  
Hiromi Morita

Like the Sac locus controlling sugar sensitivity in mice, the taste gene Tre of the fruitfly Drosophila was discovered in wild populations as a genetic dimorphism controlling gustatory sensitivity to a sugar trehalose. By activating a P-element transposon near the gene locus we obtained induced Tre mutations and analyzed the associated changes in gene organizations and the mRNA expressions. The analysis showed that Tre is identical to Gr5a, a gene that belongs to a novel seven-transmembrane receptor family expressed in chemosensory neurons and predicted to encode chemosensory receptors. Thus, Gr5a is a candidate sweet taste receptor in the fly. An amino acid substitution in the second intracellular loop domain was identified to be functionally correlated with the genetic dimorphism of Tre. Since Tre controls sweet taste sensitivity to a limited subset of sugars, other Gr genes phylogenetically related to Tre may also encode sweet taste receptors. Those candidate sweet taste receptors, however, are phylogenetically distinct from vertebrate sweet taste receptors, suggesting that the sweet taste receptors in animals do not share a common origin.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Xiao-Chen Yuan ◽  
Xu-Fang Liang ◽  
Wen-Jing Cai ◽  
Shan He ◽  
Wen-Jie Guo ◽  
...  

2020 ◽  
pp. 65-73
Author(s):  
I. N. Zakharova ◽  
Yu. A. Dmitrieva ◽  
E. B. Machneva ◽  
A. N. Tsutsaeva

Taste preferences influence not only the formation of human health, but also many areas of his life. That is why the problem of understanding the nature and regularities of taste formation has been a concern for scientists since ancient times and remains relevant nowadays. The article presents generalized data on the history of studying taste from the times of Ancient Greece to our time. Notions about the system of taste sensations in works of Aristotle, Galen, Avicenna, Vesaliy, other medieval scientists and researchers of New time are described. The authors also present an overview of current studies on the evolutionary appropriateness of taste sensations using the expression of sweet taste receptors in animals with different diets. It has been shown that obligate carnivorous animals have lost the function of sweet taste receptors, and in hummingbirds eating sweet floral nectar, on the contrary, another sweet taste receptor has acquired the function of a sweet taste receptor to detect sugars. The authors pay special attention to the available ways of forming correct taste preferences and overcoming eating disorders in infants, which is important from the point of view of the child’s future health. In particular, strategies for repeated taste effects of new foods as well as multisensory interactions with food, including sound, visual, olfactory, tactile and tasting effects are presented. It is particularly important to develop correct taste habits in children with eating disorders such as neophobia and food selectivity. Understanding the multifactorial nature of taste preferences and their impact on human health allows finding new strategies to «teach» taste from early childhood.


2021 ◽  
Vol 118 (4) ◽  
pp. e2021516118
Author(s):  
Hengwu Jiao ◽  
Huan-Wang Xie ◽  
Libiao Zhang ◽  
Nima Zhuoma ◽  
Peihua Jiang ◽  
...  

The evolution of taste perception is usually associated with the ecology and dietary changes of organisms. However, the association between feeding ecology and taste receptor evolution is unclear in some lineages of vertebrate animals. One example is the sweet taste receptor gene Tas1r2. Previous analysis of partial sequences has revealed that Tas1r2 has undergone equally strong purifying selection between insectivorous and frugivorous bats. To test whether the sweet taste function is also important in bats with contrasting diets, we examined the complete coding sequences of both sweet taste receptor genes (Tas1r2 and Tas1r3) in 34 representative bat species. Although these two genes are highly conserved between frugivorous and insectivorous bats at the sequence level, our behavioral experiments revealed that an insectivorous bat (Myotis ricketti) showed no preference for natural sugars, whereas the frugivorous species (Rousettus leschenaultii) showed strong preferences for sucrose and fructose. Furthermore, while both sweet taste receptor genes are expressed in the taste tissue of insectivorous and frugivorous bats, our cell-based assays revealed striking functional divergence: the sweet taste receptors of frugivorous bats are able to respond to natural sugars whereas those of insectivorous bats are not, which is consistent with the behavioral preference tests, suggesting that functional evolution of sweet taste receptors is closely related to diet. This comprehensive study suggests that using sequence conservation alone could be misleading in inferring protein and physiological function and highlights the power of combining behavioral experiments, expression analysis, and functional assays in molecular evolutionary studies.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jea Hwa Jang ◽  
Ha Kyeong Kim ◽  
Dong Woo Seo ◽  
Su Young Ki ◽  
Soonhong Park ◽  
...  

Chemosensory receptors are expressed primarily in sensory organs, but their expression elsewhere can permit ligand detection in other contexts that contribute to survival. The ability of sweet taste receptors to detect natural sugars, sugar alcohols, and artificial sweeteners suggests sweet taste receptors are involved in metabolic regulation in both peripheral organs and in the central nervous system. Our limited knowledge of sweet taste receptor expression in the brain, however, has made it difficult to assess their contribution to metabolic regulation. We, therefore, decided to profile the expression pattern of T1R2, a subunit specific to the sweet taste receptor complex, at the whole-brain level. Using T1r2-Cre knock-in mice, we visualized the overall distribution of Cre-labeled cells in the brain. T1r2-Cre is expressed not only in various populations of neurons, but also in glial populations in the circumventricular organs and in vascular structures in the cortex, thalamus, and striatum. Using immunohistochemistry, we found that T1r2 is expressed in hypothalamic neurons expressing neuropeptide Y and proopiomelanocortin in arcuate nucleus. It is also co-expressed with a canonical taste signaling molecule in perivascular cells of the median eminence. Our findings indicate that sweet taste receptors have unidentified functions in the brain and suggest that they may be a novel therapeutic target in the central nervous system.


Sign in / Sign up

Export Citation Format

Share Document