scholarly journals In vivo and in vitro study on characterization and mechanism of the intestinal absorption of 2,3,5,4'-tetrahydroxy-stilbene-2-O-β-D-glucoside

2019 ◽  
Author(s):  
Cheng Wang ◽  
Yimeng Zhou ◽  
Xiaohong Gong ◽  
Li Zheng ◽  
Yunxia Li

Abstract Background: 2,3,5,4'-tetrahydroxystilbence-2-O-β-D-glucoside(TSG) is a polyhydroxyphenolic compound, which exhibits a broad spectrum of pharmacological activities, such asanti-inflammatory, anti-depression, anti-oxidation and anti-atherosclerosis.However, the compound has poor bioavailability and the underlying absorption mechanisms has not been studied. Therefore, the purpose of this study was to investigate the intestinal absorption mechanism of TSG. Methods: This study used the Caco-2 cell monolayer model and the single-passintestinal perfusion modelto explore the intestinal absorption mechanisms of TSG. The effects of basic parameters such as drug concentration, time and pH on the intestinal absorption of TSG were analyzed by high performance liquid chromatography.In addition, the susceptibility of TSG absorption process to treatment with three inhibitors, such as P-gp inhibitors verapamil hydrochloride and quinidine, and the MRP2 inhibitor probenecid were also assessed. Results: TSG is poorly absorbed in the intestines and the absorption of TSG in the stomach is much higher than that in the intestine. Both in vivo and in vitro experiments showed that the absorption of TSG was saturated with increasing concentration. and it was better absorbed in a weakly acidic environment with a pH of 6.4. Moreover, TSG interacts with P-gp and MRP2, and TSG is not only the substrate of the P-gp and MRP2, but also affects the expression of P-gp and MRP2. Conclusions: It can be concluded that the intestinal absorption mechanismsofTSG involve processes passive transport and the participation of efflux transporters.

2020 ◽  
Author(s):  
Cheng Wang ◽  
Yimeng Zhou ◽  
Xiaohong Gong ◽  
Li Zheng ◽  
Yunxia Li

Abstract Background: 2,3,5,4'-tetrahydroxystilbence-2-O-β-D-glucoside(TSG) is a polyhydroxyphenolic compound, which exhibited a broad spectrum of pharmacological activities, such asanti-inflammatory, anti-depression, anti-oxidation and anti-atherosclerosis.However, the compound had poor bioavailability and the underlying absorption mechanisms had not been studied. Therefore, the purpose of this study was to investigate the intestinal absorption mechanism of TSG. Methods: This study used Caco-2 cell monolayer model and single-passintestinal perfusion modelto explore the gastrointestinal absorption mechanisms of TSG. The effects of basic parameters such as drug concentration, time and pH on the intestinal absorption of TSG were analyzed by high performance liquid chromatography.The absorption susceptibility of TSG to three inhibitors, P-gp inhibitors verapamil hydrochloride and quinidine, and MRP2 inhibitor probenecid were also assessed. Results: TSG was poorly absorbed in the intestines and the absorption of TSG in stomach is much higher than that in intestine. Both in vitro and in situ experiments showed that the absorption of TSG was saturated with increasing concentration and it was better absorbed in a weakly acidic environment pH 6.4. Moreover, TSG interacts with P-gp and MRP2, and TSG was not only the substrate of the P-gp and MRP2, but also affected the expression of P-gp and MRP2. Conclusions: It wasconcluded that the gastrointestinalabsorption mechanisms ofTSG involved processes passive transport and the participation ofefflux transporters.


2019 ◽  
Author(s):  
Cheng Wang ◽  
Yimeng Zhou ◽  
Xiaohong Gong ◽  
Li Zheng ◽  
Yunxia Li

Abstract Background: 2,3,5,4'-tetrahydroxystilbence-2-O-β-D-glucoside(TSG) is a polyhydroxyphenolic compound, which exhibited a broad spectrum of pharmacological activities, such asanti-inflammatory, anti-depression, anti-oxidation and anti-atherosclerosis.However, the compound had poor bioavailability and the underlying absorption mechanisms had not been studied. Therefore, the purpose of this study was to investigate the intestinal absorption mechanism of TSG. Methods:This study used Caco-2 cell monolayer model and single-passintestinal perfusion modelto explore the gastrointestinal absorption mechanisms of TSG. The effects of basic parameters such as drug concentration, time and pH on the intestinal absorption of TSG were analyzed by high performance liquid chromatography.The absorption susceptibility of TSG to three inhibitors, P-gp inhibitors verapamil hydrochloride and quinidine, and MRP2 inhibitor probenecid were also assessed. Results: TSG was poorly absorbed in the intestines and the absorption of TSG in stomach is much higher than that in intestine. Both in vitro andin situ experiments showed that the absorption of TSG was saturated with increasing concentration and it was better absorbed in a weakly acidic environment pH 6.4. Moreover, TSG interacts with P-gp and MRP2, and TSG was not only the substrate of the P-gp and MRP2, but also affected the expression of P-gp and MRP2. Conclusions: It wasconcluded that the gastrointestinalabsorption mechanisms ofTSG involved processes passive transport and the participation ofefflux transporters.


2019 ◽  
Vol 18 (26) ◽  
pp. 2209-2229 ◽  
Author(s):  
Hai Pham-The ◽  
Miguel Á. Cabrera-Pérez ◽  
Nguyen-Hai Nam ◽  
Juan A. Castillo-Garit ◽  
Bakhtiyor Rasulev ◽  
...  

One of the main goals of in silico Caco-2 cell permeability models is to identify those drug substances with high intestinal absorption in human (HIA). For more than a decade, several in silico Caco-2 models have been made, applying a wide range of modeling techniques; nevertheless, their capacity for intestinal absorption extrapolation is still doubtful. There are three main problems related to the modest capacity of obtained models, including the existence of inter- and/or intra-laboratory variability of recollected data, the influence of the metabolism mechanism, and the inconsistent in vitro-in vivo correlation (IVIVC) of Caco-2 cell permeability. This review paper intends to sum up the recent advances and limitations of current modeling approaches, and revealed some possible solutions to improve the applicability of in silico Caco-2 permeability models for absorption property profiling, taking into account the above-mentioned issues.


2008 ◽  
Vol 36 (02) ◽  
pp. 313-328 ◽  
Author(s):  
Yan Yao ◽  
Wan-Ying Wu ◽  
Ai-Hua Liu ◽  
Shao-Sheng Deng ◽  
Kai-Shun Bi ◽  
...  

Salvia miltiorrhiza and Panax notoginseng were both considered to be beneficial to cardiovascular diseases in traditional Chinese medicine and often used in combination. To examine the possible interaction between them, the effects of the active fractions of these two herbs, salvianolic acids (SA) and notoginsengnosides (NG), on platelet aggregation were checked respectively or in combination in vitro and in vivo. Both the platelet aggregation of platelet rich plasma (PRP) and washed platelet after ADP induction were checked. In vitro study showed that both SA and NG had an inhibitory effect on platelet aggregation. However, there is no synergistic effect of the combination of SA and NG in vitro. In vivo study showed that i.g. 550 mg/kg/day SA or NG for 5 days could significantly inhibit ADP-induced platelet aggregation of PRP. Moreover, combination of SA and NG at a ratio of 5:1 had a synergistic effect on platelet aggregation of PRP. The mechanism for the synergism of SA and NG in vivo was not clear. High performance liquid chromatography analysis of the plasma of rats received SA, NG or combination of SA and NG showed that co-administration of NG caused change in the plasma distribution profile of SA. The influence of combination on the absorption and/or metabolism of SA may be one of the reasons for the synergism of SA and NG in vivo.


PLoS ONE ◽  
2017 ◽  
Vol 12 (6) ◽  
pp. e0179292 ◽  
Author(s):  
W. Chaturi Prasadani ◽  
Chaturi M. Senanayake ◽  
Nimanthi Jayathilaka ◽  
Sagarika Ekanayake ◽  
Kapila N. Seneviratne

1977 ◽  
Vol 232 (5) ◽  
pp. E471 ◽  
Author(s):  
D Hollander ◽  
K S Muralidhara

Intestinal absorption of [3H]retinol was studied in the unanesthetized rat. Luminal perfusate was recirculated through isolated intestinal segments with intact vascular and lymphatic circulation. Apparent saturation kinetics were found in physiological concentrations of retinol, whereas a linear relationship between the concentration and absorption rate was found at pharmacological concentrations of retinol in the perfusate. In physiological concentrations, retinol uptake in vitro by everted gut sacs was unaffected by anoxia or metabolic inhibitors and uncouplers. In vivo retinol absorption rate was decreased when sodium taurocholate concentration was raised above 5 mM, or when 2.5 mM linoleic or linolenic acids were added to the perfusate. Absorption increased markedly as the thickness of the unstirred water layer was diminished. Variations in perfusate pH from 4.5 to 8.6 did not change the retinol absorption rate. In vivo absorption of retinol in physiological concentrations is mediated by a saturable, carrier-mediated passive absorption mechanism modified by the presence of fatty acids of varying chain length.


2021 ◽  
Vol 24 (6) ◽  
pp. E829-E837

BACKGROUND: Postoperative patient-controlled analgesia provides pain relief, encourages early mobilization, and results in a shortened hospital stay. Patient-controlled analgesia involves the mixing of different types of drugs. When using patient-controlled analgesia, it is important to confirm the microbiological and physicochemical stability of each drug in a mixture to guarantee that the drug is delivered to the patient in an unaltered form. OBJECTIVES: To confirm the microbiological and physicochemical stability of various drug mixtures for intravenous patient-controlled analgesia. STUDY DESIGN: An in vitro protocol to examine the microbiological and physicochemical stability of the most commonly used postoperative intravenous patient-controlled analgesia mixtures at our institution. SETTING: In vitro laboratory study. METHODS: Each mixture contained a total of 4 drugs: fentanyl 400 µg, ketorolac 30 mg, either hydromorphone 4 mg or oxycodone 10 mg, and either ramosetron 0.3 mg or ondansetron 10 mg. Each mixture was placed in a portable patient-controlled analgesia system containing 0.9% saline and stored at a constant temperature of 24°C for 96 hours. Physical properties (color, transparency, and sedimentation) were observed with the naked eye and optical microscopy. Sterility testing was performed to assess microbiological contamination in the drug mixture during the 96-hour study period. The pH of each mixture was evaluated for up to 96 hours after mixing. The concentration of each drug was evaluated by high-performance liquid chromatography every 24 hours until 96 hours after mixing. RESULTS: All mixtures appeared visibly transparent, and no sediments were visible under the microscope. Bacterial or fungal growth was not observed in any of the samples after 14 days of incubation. The pH variations in all mixtures were maintained within 0.25 over the 96-hour study period. The concentration of drugs, except ketorolac, ranged from 90–110% of the initial concentration up to 96 hours after mixing. In the mixtures with a pH of 4.21–4.39, the concentration of ketorolac significantly decreased at 24 hours and 48 hours. LIMITATIONS: Confirmation of the stability of drugs in vitro does not automatically ensure that the pharmacokinetics and pharmacodynamics of the drugs are not altered in vivo. CONCLUSION: With the exception of ketorolac, the drugs used in the intravenous patient-controlled analgesia drug mixtures in this study were physicochemically stable up to 96 hours after mixing. The concentration of ketorolac decreased in more acidic mixtures. KEY WORDS: Patient-controlled analgesia, multimodal analgesia, stability, fentanyl, oxycodone, hydromorphone, ketorolac, ondansetron, ramosetron


2020 ◽  
Vol 11 (4) ◽  
pp. 12006-12019

Scopoletin (7-hydroxy-6-methoxy coumarin) is a coumarin phenolic compound widely found in plants and includes coumarin derivatives that are superior in several types of plants. This article was created to provide information regarding the isolation process, analysis, and pharmacological activity. The method used is to study and analyze scopoletin articles from national and international journals. From the data sources studied, the yield of scopoletin extract in Morinda citrifolia L was 0.93%, Helichrysum italicum was 1.933mg / 100g. The scopoletin content in Convolvulus pluricaulis is 0.1738%, Artemisia annua is 0.3%, Lasianthus lucidus is 54 mg, and Morus alba L. (Po-sa) is 0.0009%. The highest yield of scopoletin extract was 0.93% found in noni (Morinda citrifolia L) using the Soxhlet method. The highest scopoletin content was 0.3% in Artemisia annua using column chromatography and recrystallization. Scopoletin identification can be done using Thin Layer Chromatography (TLC), High-Performance Liquid Chromatography (HPLC), Fourier Transform Infrared Spectrophotometer (FTIR), Nuclear Magnetic Resonance, and Mass Spectrometry. Based on in vitro studies, scopoletin has pharmacological activities, including as an antihepatotoxicity, antibacterial, antifungal, antitubercular, and antioxidant. Pharmacological activities that have been proven in vivo are antithyroid, antihypertensive, anti-proliferative, anti-inflammatory, neurological, anti-dopaminergic and anti-adrenergic, antidiabetic, and antihyperuricemic activities. From the various pharmacological activities of scopoletin, it has the potential to be further developed.


Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5555
Author(s):  
Joana Gonçalves ◽  
Miguel Castilho ◽  
Tiago Rosado ◽  
Ângelo Luís ◽  
José Restolho ◽  
...  

Ayahuasca is a psychoactive beverage that contains the psychoactive compound N,N-dimethyltryptamine and β-carboline alkaloids. This study aims at determining in vitro the bioavailability and bioaccessibility of the main compounds present in decoctions of four individual plants, in a commercial mixture and in four mixtures of two individual plants used in the preparation of Ayahuasca. The samples were subjected to an in vitro digestion process, and the Caco-2 cell line was used as an absorption model. The integrity and permeability of the cell monolayer were evaluated, as well as the cytotoxicity of the extracts. After digestion and cell incubation, the compounds absorbed by the cell monolayer were quantified by high-performance liquid chromatography coupled to a diode array detector. The results showed that compounds such as N,N-dimethyltryptamine, Harmine, Harmaline, Harmol, Harmalol and Tetrahydroharmine were released from the matrix during the in vitro digestion process, becoming bioaccessible. Similarly, some of these compounds, after being incubated with the cell monolayer, were absorbed, becoming bioavailable. The extracts did not show cytotoxicity after cell incubation, and the integrity and permeability of the cell monolayer were not compromised.


Sign in / Sign up

Export Citation Format

Share Document