scholarly journals TDP-43 is elevated in plasma neuronal-derived exosomes of patients with Alzheimer's disease

2019 ◽  
Author(s):  
Nan Zhang ◽  
Dongmei Gu ◽  
Meng Meng ◽  
Marc L. Gordon

Abstract Background Recently, TDP-43 has been recognized as a common proteinopathy in the “oldest old” and a neuropathological comorbidity in patients with Alzheimer’s disease (AD). However, since it has a low concentration in cerebrospinal fluid, the presence of TDP-43 in AD is rarely investigated in vivo. Methods Twenty-four patients with amyloid PET confirmed AD and 15 healthy controls (HCs) were included in this study. TDP-43 level in plasma neuronal-derived exosomes (NDEs) was measured by enzyme-linked immunosorbent assay. Results TDP-43 level was elevated in patients with AD compared with HCs (1.20 ± 0.91 ng/ml vs 0.64 ± 0.20 ng/ml, P < 0.039), after controlling for age. There was no correlation between TDP-43 level and cognitive function, neuropsychiatric symptoms or APOE genotype in patients with AD. Conclusions This study demonstrated increased TDP-43 accumulation in AD patients by examining plasma NDEs, which may provide a window into the effects of TDP-43 on AD progression.

2013 ◽  
Vol 2013 ◽  
pp. 1-4
Author(s):  
Yui Nakayama ◽  
Satoru Morimoto ◽  
Misao Yoneda ◽  
Shigeki Kuzuhara ◽  
Yasumasa Kokubo

Objective. Amyotrophic lateral sclerosis/parkinsonism-dementia complex is classified as one of the tauopathies. Methods. The total tau, phosphorylated tau, and amyloid β42 levels were assayed in cerebrospinal fluid from patients with Kii amyotrophic lateral sclerosis/parkinsonism-dementia complex (), Alzheimer’s disease (), Parkinson’s disease (), amyotrophic lateral sclerosis (), and controls () using specific enzyme-linked immunosorbent assay methods. Results. Total tau and phosphorylated tau did not increase and amyloid β42 was relatively reduced in Kii amyotrophic lateral sclerosis/parkinsonism-dementia complex. Relatively reduced amyloid β42 might discriminate Kii amyotrophic lateral sclerosis/parkinsonism-dementia complex from amyotrophic lateral sclerosis and Parkinson’s disease, and the ratios of phosphorylated-tau to amyloid β42 could discriminate Kii amyotrophic lateral sclerosis/parkinsonism-dementia complex from Alzheimer’s disease. Conclusions. Cerebrospinal fluid analysis may be useful to differentiate amyotrophic lateral sclerosis/parkinsonism-dementia complex from Alzheimer’s disease, amyotrophic lateral sclerosis, and Parkinson’s disease.


2015 ◽  
Vol 44 (2) ◽  
pp. 525-539 ◽  
Author(s):  
Jeffrey L. Seeburger ◽  
Daniel J. Holder ◽  
Marc Combrinck ◽  
Catharine Joachim ◽  
Omar Laterza ◽  
...  

Metabolites ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 380
Author(s):  
Seunghee Na ◽  
Hyeonseok Jeong ◽  
Jong-Sik Park ◽  
Yong-An Chung ◽  
In-Uk Song

The neuropathology of Parkinson’s disease dementia (PDD) is heterogenous, and the impacts of each pathophysiology and their synergistic effects are not fully understood. The aim of this study was to evaluate the frequency and impacts of co-existence with Alzheimer’s disease in patients with PDD by using 18F-florbetaben PET imaging. A total of 23 patients with PDD participated in the study. All participants underwent 18F-florbetaben PET and completed a standardized neuropsychological battery and assessment of motor symptoms. The results of cognitive tests, neuropsychiatric symptoms, and motor symptoms were analyzed between the positive and negative 18F-florbetaben PET groups. Four patients (17.4%) showed significant amyloid burden. Patients with amyloid-beta showed poorer performance in executive function and more severe neuropsychiatric symptoms than those without amyloid-beta. Motor symptoms assessed by UPDRS part III and the modified H&Y Scale were not different between the two groups. The amyloid PET scan of a patient with PDD can effectively reflect a co-existing Alzheimer’s disease pathology. Amyloid PET scans might be able to help physicians of PDD patients showing rapid progression or severe cognitive/behavioral features.


2020 ◽  
pp. 1-13
Author(s):  
Karolina Minta ◽  
Gunnar Brinkmalm ◽  
Erik Portelius ◽  
Per Johansson ◽  
Johan Svensson ◽  
...  

Background: Brevican and neurocan are central nervous system-specific extracellular matrix proteoglycans. They are degraded by extracellular enzymes, such as metalloproteinases. However, their degradation profile is largely unexplored in cerebrospinal fluid (CSF). Objective: The study aim was to quantify proteolytic peptides derived from brevican and neurocan in human CSF of patients with Alzheimer’s disease (AD) and vascular dementia (VaD) compared with controls. Methods: The first cohort consisted of 75 individuals including 25 patients with AD, 7 with mild cognitive impairment (MCI) diagnosed with AD upon follow-up, 10 patients with VaD or MCI diagnosed with VaD upon follow-up, and 33 healthy controls and cognitively stable MCI patients. In the second cohort, 31 individuals were included (5 AD patients, 14 VaD patients and 12 healthy controls). Twenty proteolytic peptides derived from brevican (n = 9) and neurocan (n = 11) were quantified using high-resolution parallel reaction monitoring mass spectrometry. Results: In the first cohort, the majority of CSF concentrations of brevican and neurocan peptides were significantly decreased inVaDas compared withADpatients (AUC = 0.83.0.93, p≤0.05) and as compared with the control group (AUC = 0.79.0.87, p ≤ 0.05). In the second cohort, CSF concentrations of two brevican peptides (B87, B156) were significantly decreased in VaD compared with AD (AUC = 0.86.0.91, p ≤ 0.05) and to controls (AUC = 0.80.0.82, p ≤ 0.05), while other brevican and neurocan peptides showed a clear trend to be decreased in VaD compared with AD (AUC = 0.64.80, p > 0.05). No peptides differed between AD and controls. Conclusion: Brevican and neurocan peptides are potential diagnostic biomarkers for VaD, with ability to separate VaD from AD.


2020 ◽  
Vol 12 (524) ◽  
pp. eaau5732 ◽  
Author(s):  
Renaud La Joie ◽  
Adrienne V. Visani ◽  
Suzanne L. Baker ◽  
Jesse A. Brown ◽  
Viktoriya Bourakova ◽  
...  

β-Amyloid plaques and tau-containing neurofibrillary tangles are the two neuropathological hallmarks of Alzheimer’s disease (AD) and are thought to play crucial roles in a neurodegenerative cascade leading to dementia. Both lesions can now be visualized in vivo using positron emission tomography (PET) radiotracers, opening new opportunities to study disease mechanisms and improve patients’ diagnostic and prognostic evaluation. In a group of 32 patients at early symptomatic AD stages, we tested whether β-amyloid and tau-PET could predict subsequent brain atrophy measured using longitudinal magnetic resonance imaging acquired at the time of PET and 15 months later. Quantitative analyses showed that the global intensity of tau-PET, but not β-amyloid–PET, signal predicted the rate of subsequent atrophy, independent of baseline cortical thickness. Additional investigations demonstrated that the specific distribution of tau-PET signal was a strong indicator of the topography of future atrophy at the single patient level and that the relationship between baseline tau-PET and subsequent atrophy was particularly strong in younger patients. These data support disease models in which tau pathology is a major driver of local neurodegeneration and highlight the relevance of tau-PET as a precision medicine tool to help predict individual patient’s progression and design future clinical trials.


2002 ◽  
Vol 324 (1) ◽  
pp. 83-85 ◽  
Author(s):  
Peter Schönknecht ◽  
Dieter Lütjohann ◽  
Johannes Pantel ◽  
Habertus Bardenheuer ◽  
Tobias Hartmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document