scholarly journals Identification and functional characterization of NbMLP28, a novel MLP-like protein 28 enhancing Potato virus Y resistance in Nicotiana benthamiana

2020 ◽  
Author(s):  
Liyun Song ◽  
Jie Wang ◽  
Haiyan Jia ◽  
Ali Kamran ◽  
Yuanxia Qin ◽  
...  

Abstract Background: Major latex proteins (MLPs) belong to the MLP subfamily in Bet v 1 protein family and respond to both biotic and abiotic stresses, which play critical roles in plant disease resistance. As the type species of widely distributed and economically devastating Potyvirus, Potato virus Y (PVY) is one of the major constraints to important crop plants including tobacco ( Nicotiana benthamiana ) worldwide. Despite the great losses owing to PVY infection in tobacco, there is no previous study investigating the potential role of MLPs in developing resistance to viral infection. Results: In this study, for the first time we have identified and functionally analyzed the MLP-like protein 28 from N. benthamiana , denoted as NbMLP28 and investigated its role in conferring resistance to N. benthamiana against PVY infection. NbMLP28 was localized to the plasmalemma and nucleus, with the highest level in the root. NbMLP28 gene was hypothesized to be triggered by PVY infection and was highly expressed in jasmonic acid (JA) signaling pathway. Further validation was achieved through silencing of NbMLP28 through virus-induced gene silencing (VIGS) that rendered N. benthamiana plants more vulnerable to PVY infection, contrary to overexpression that enhanced resistance. Conclusions: Taken together, this is the first study describing the role of NbMLP28 in tobacco against PVY infection and provide a pivotal point towards obtaining pathogen-resistant tobacco varieties through constructing new candidate genes of MLP subfamily.

2019 ◽  
Author(s):  
liyun song ◽  
Jie Wang ◽  
Haiyan Jia ◽  
Ali Kamran ◽  
Yuanxia Qin ◽  
...  

Abstract Background: Major latex proteins (MLPs) belong to the MLP subfamily in Bet v 1 protein family and respond to both biotic and abiotic stresses, which play critical roles in plant disease resistance. As the type species of widely distributed and economically devastating Potyvirus, Potato virus Y (PVY) is one of the major constraints to important crop plants including tobacco ( Nicotiana benthamiana ) worldwide. Despite the great losses owing to PVY infection in tobacco, there is no previous study investigating the potential role of MLPs in developing resistance to viral infection.Results: In this study, for the first time we have identified and functionally analyzed the MLP-like protein 28 from N. benthamiana , denoted as NbMLP28 and investigated its role in conferring resistance to N. benthamiana against PVY infection. NbMLP28 was localized to the plasmalemma and nucleus, with the highest level in the root. NbMLP28 gene was hypothesized to be triggered by PVY infection and was highly expressed in jasmonic acid (JA) signaling pathway. Further validation was achieved through silencing of NbMLP28 through virus-induced gene silencing (VIGS) that rendered N. benthamiana plants more vulnerable to PVY infection, contrary to overexpression that enhanced resistance.Conclusions: Taken together, this is the first study describing the role of NbMLP28 in tobacco against PVY infection and provide a pivotal point towards obtaining pathogen-resistant tobacco varieties through constructing new candidate genes of MLP subfamily.


Plant Disease ◽  
2016 ◽  
Vol 100 (2) ◽  
pp. 269-275 ◽  
Author(s):  
Mohamad Chikh-Ali ◽  
Nilsa A. Bosque-Pérez ◽  
Dalton Vander Pol ◽  
Dantje Sembel ◽  
Alexander V. Karasev

The importance of potato has increased dramatically in Indonesia over the last three decades. During this period, ‘Granola’, a potato cultivar originally from Germany, has become the most common cultivar for fresh consumption in Indonesia. In August 2014, a survey was conducted in Sulawesi, where potato fields cultivated with Granola and its selection, ‘Super John’, were sampled for Potato virus Y (PVY) presence. PVY was found in Sulawesi for the first time. Samples determined to be positive for PVY were subsequently typed to strain using reverse-transcription polymerase chain reaction assays. All PVY isolates sampled were identified as PVYNTN recombinants, with three recombination junctions in P3, VPg, and CP regions of the genome. Three local PVY isolates were subjected to whole-genome sequencing and subsequent sequence analysis. The whole genomes of the Indonesian PVYNTN isolates I-6, I-16, and I-17 were found to be closely related to the European PVYNTN-A. This recombinant type was shown previously to cause potato tuber necrotic ringspot disease (PTNRD) in susceptible potato cultivars. The dependence of potato farmers on mostly a single cultivar, Granola, may have given a competitive advantage to PVYNTN over other PVY strains, resulting in the predominance of the PVYNTN recombinant. The dominance of PVYNTN in Sulawesi, and possibly in Indonesia as a whole, represents a potential risk to any newly introduced potato cultivar to the country, especially cultivars susceptible to PTNRD.


Planta ◽  
2006 ◽  
Vol 225 (3) ◽  
pp. 523-539 ◽  
Author(s):  
M. Senthil-Kumar ◽  
Geetha Govind ◽  
Li Kang ◽  
Kirankumar S. Mysore ◽  
M. Udayakumar

2020 ◽  
Vol 168 (3) ◽  
pp. 203-211 ◽  
Author(s):  
Eric G Ramírez-Salazar ◽  
Erika V Almeraya ◽  
Tania V López-Perez ◽  
Nelly Patiño ◽  
Jorge Salmeron ◽  
...  

Abstract Osteoporosis is the most common bone disease and a public health issue with increasing prevalence in Mexico. This disease is caused by an imbalance in the bone remodelling process mediated by osteoclast and osteoblast. MicroRNAs have emerged as key players during the differentiation of both types of cells specialized involved in bone metabolism. We found high expression levels of miR-548x-3p in circulating monocytes derived from postmenopausal osteoporotic women. This study aimed to analyse the functional characterization of miR-548x-3p roles in the bone remodelling process. We validated by RT-qPCR, the elevated levels of miR-548x-3p in circulating monocytes derived from osteoporosis women. Through bioinformatics analysis, we identify MAFB and STAT1 as potential target genes for miR-548x-3p. Both genes showed low levels of expression in circulating monocytes derived from osteoporotic women. In addition, we demonstrated the binding of miR-548x-3p to the 3′-UTR of both mRNAs. MiR-548x-3p was overexpressed in osteoblasts-like cell lines decreasing the levels of MAFB and STAT1 mRNA and protein. We found that miR-548x-3p overexpression inhibits the proliferation, migration and invasion of the cell lines evaluated. Our results identified, by the first time, the potential role of miR-548x-3p as a modulator of the bone remodelling process by regulating the expression of MAFB and STAT1.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 524
Author(s):  
Bingqi Wu ◽  
Zhiting Chen ◽  
Xiaohui Xu ◽  
Ronghua Chen ◽  
Siwei Wang ◽  
...  

Functional characterization of plant agrichemical transporters provided an opportunity to discover molecules that have a high mobility in plants and have the potential to increase the amount of pesticides reaching damage sites. Agrobacterium-mediated transient expression in tobacco is simple and fast, and its protein expression efficiency is high; this system is generally used to mediate heterologous gene expression. In this article, transient expression of tobacco nicotine uptake permease (NtNUP1) and rice polyamine uptake transporter 1 (OsPUT1) in Nicotiana benthamiana was performed to investigate whether this system is useful as a platform for studying the interactions between plant transporters and pesticides. The results showed that NtNUP1 increases nicotine uptake in N. benthamiana foliar discs and protoplasts, indicating that this transient gene expression system is feasible for studying gene function. Moreover, yeast expression of OsPUT1 apparently increases methomyl uptake. Overall, this method of constructing a transient gene expression system is useful for improving the efficiency of analyzing the functions of plant heterologous transporter-encoding genes and revealed that this system can be further used to study the functions of transporters and pesticides, especially their interactions.


Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 232
Author(s):  
Weiran Zheng ◽  
Haichao Hu ◽  
Qisen Lu ◽  
Peng Jin ◽  
Linna Cai ◽  
...  

Recent studies have shown that a large number of long noncoding RNAs (lncRNAs) can regulate various biological processes in animals and plants. Although lncRNAs have been identified in many plants, they have not been reported in the model plant Nicotiana benthamiana. Particularly, the role of lncRNAs in plant virus infection remains unknown. In this study, we identified lncRNAs in N. benthamiana response to Chinese wheat mosaic virus (CWMV) infection by RNA sequencing. A total of 1175 lncRNAs, including 65 differentially expressed lncRNAs, were identified during CWMV infection. We then analyzed the functions of some of these differentially expressed lncRNAs. Interestingly, one differentially expressed lncRNA, XLOC_006393, was found to participate in CWMV infection as a precursor to microRNAs in N. benthamiana. These results suggest that lncRNAs play an important role in the regulatory network of N. benthamiana in response to CWMV infection.


2006 ◽  
Vol 74 (7) ◽  
pp. 3742-3755 ◽  
Author(s):  
Lakshmi Pillai ◽  
Jian Sha ◽  
Tatiana E. Erova ◽  
Amin A. Fadl ◽  
Bijay K. Khajanchi ◽  
...  

ABSTRACT Human diseases caused by species of Aeromonas have been classified into two major groups: septicemia and gastroenteritis. In this study, we reported the molecular and functional characterization of a new virulence factor, ToxR-regulated lipoprotein, or TagA, from a diarrheal isolate, SSU, of Aeromonas hydrophila. The tagA gene of A. hydrophila exhibited 60% identity with that of a recently identified stcE gene from Escherichia coli O157:H7, which encoded a protein (StcE) that provided serum resistance to the bacterium and prevented erythrocyte lysis by controlling classical pathway of complement activation by cleaving the complement C1-esterase inhibitor (C1-INH). We purified A. hydrophila TagA as a histidine-tagged fusion protein (rTagA) from E. coli DE3 strain using a T7 promoter-based pET30 expression vector and nickel affinity column chromatography. rTagA cleaved C1-INH in a time-dependent manner. The tagA isogenic mutant of A. hydrophila, unlike its corresponding wild-type (WT) or the complemented strain, was unable to cleave C1-INH, which is required to potentiate the C1-INH-mediated lysis of host and bacterial cells. We indeed demonstrated colocalization of C1-INH and TagA on the bacterial surface by confocal fluorescence microscopy, which ultimately resulted in increased serum resistance of the WT bacterium. Likewise, we delineated the role of TagA in contributing to the enhanced ability of C1-INH to inhibit the classical complement-mediated lysis of erythrocytes. Importantly, we provided evidence that the tagA mutant was significantly less virulent in a mouse model of infection (60%) than the WT bacterium at two 50% lethal doses, which resulted in 100% mortality within 48 h. Taken together, our data provided new information on the role of TagA as a virulence factor in bacterial pathogenesis. This is the first report of TagA characterization from any species of Aeromonas.


Sign in / Sign up

Export Citation Format

Share Document