MicroRNA-548-3p overexpression inhibits proliferation, migration and invasion in osteoblast-like cells by targeting STAT1 and MAFB

2020 ◽  
Vol 168 (3) ◽  
pp. 203-211 ◽  
Author(s):  
Eric G Ramírez-Salazar ◽  
Erika V Almeraya ◽  
Tania V López-Perez ◽  
Nelly Patiño ◽  
Jorge Salmeron ◽  
...  

Abstract Osteoporosis is the most common bone disease and a public health issue with increasing prevalence in Mexico. This disease is caused by an imbalance in the bone remodelling process mediated by osteoclast and osteoblast. MicroRNAs have emerged as key players during the differentiation of both types of cells specialized involved in bone metabolism. We found high expression levels of miR-548x-3p in circulating monocytes derived from postmenopausal osteoporotic women. This study aimed to analyse the functional characterization of miR-548x-3p roles in the bone remodelling process. We validated by RT-qPCR, the elevated levels of miR-548x-3p in circulating monocytes derived from osteoporosis women. Through bioinformatics analysis, we identify MAFB and STAT1 as potential target genes for miR-548x-3p. Both genes showed low levels of expression in circulating monocytes derived from osteoporotic women. In addition, we demonstrated the binding of miR-548x-3p to the 3′-UTR of both mRNAs. MiR-548x-3p was overexpressed in osteoblasts-like cell lines decreasing the levels of MAFB and STAT1 mRNA and protein. We found that miR-548x-3p overexpression inhibits the proliferation, migration and invasion of the cell lines evaluated. Our results identified, by the first time, the potential role of miR-548x-3p as a modulator of the bone remodelling process by regulating the expression of MAFB and STAT1.

2020 ◽  
Author(s):  
Liyun Song ◽  
Jie Wang ◽  
Haiyan Jia ◽  
Ali Kamran ◽  
Yuanxia Qin ◽  
...  

Abstract Background: Major latex proteins (MLPs) belong to the MLP subfamily in Bet v 1 protein family and respond to both biotic and abiotic stresses, which play critical roles in plant disease resistance. As the type species of widely distributed and economically devastating Potyvirus, Potato virus Y (PVY) is one of the major constraints to important crop plants including tobacco ( Nicotiana benthamiana ) worldwide. Despite the great losses owing to PVY infection in tobacco, there is no previous study investigating the potential role of MLPs in developing resistance to viral infection. Results: In this study, for the first time we have identified and functionally analyzed the MLP-like protein 28 from N. benthamiana , denoted as NbMLP28 and investigated its role in conferring resistance to N. benthamiana against PVY infection. NbMLP28 was localized to the plasmalemma and nucleus, with the highest level in the root. NbMLP28 gene was hypothesized to be triggered by PVY infection and was highly expressed in jasmonic acid (JA) signaling pathway. Further validation was achieved through silencing of NbMLP28 through virus-induced gene silencing (VIGS) that rendered N. benthamiana plants more vulnerable to PVY infection, contrary to overexpression that enhanced resistance. Conclusions: Taken together, this is the first study describing the role of NbMLP28 in tobacco against PVY infection and provide a pivotal point towards obtaining pathogen-resistant tobacco varieties through constructing new candidate genes of MLP subfamily.


2019 ◽  
Vol 39 (1) ◽  
Author(s):  
Yan Jia ◽  
Lian-Mei Zhao ◽  
Han-Yu Bai ◽  
Cong Zhang ◽  
Su-Li Dai ◽  
...  

AbstractWe aimed to confirm the role of miR-1296-5p in gastric cancer and to identify its target genes. The expression of miR-1296-5p was measured in gastric cancer tissues and cell lines. The function of miR-1296-5p was examined by the overexpression and inhibition of its expression in typical gastric cell lines as well as SGC-7901 and MGC-803 cells. The targets of miR-1296-5p were identified by a luciferase activity assay. We found that miR-1296-5p was down-regulated in gastric cancer tissue and cell lines, and low expression levels of miR-1296-5p were associated with advanced clinical stage. Moreover, miR-1296-5p inhibited cell proliferation, migration, and invasion in SGC-7901 and MGC-803 cells. Then, we identified CDK6 and EGFR as novel targets of miR-1296-5p by a luciferase activity assay. Furthermore, the overexpression of miR-1296-5p suppressed the expression of CDK6 and EGFR. Our results indicated a tumor-suppressive role of miR-1296-5p through the translational repression of oncogenic CDK6 and EGFR in gastric cancer.


2019 ◽  
Author(s):  
liyun song ◽  
Jie Wang ◽  
Haiyan Jia ◽  
Ali Kamran ◽  
Yuanxia Qin ◽  
...  

Abstract Background: Major latex proteins (MLPs) belong to the MLP subfamily in Bet v 1 protein family and respond to both biotic and abiotic stresses, which play critical roles in plant disease resistance. As the type species of widely distributed and economically devastating Potyvirus, Potato virus Y (PVY) is one of the major constraints to important crop plants including tobacco ( Nicotiana benthamiana ) worldwide. Despite the great losses owing to PVY infection in tobacco, there is no previous study investigating the potential role of MLPs in developing resistance to viral infection.Results: In this study, for the first time we have identified and functionally analyzed the MLP-like protein 28 from N. benthamiana , denoted as NbMLP28 and investigated its role in conferring resistance to N. benthamiana against PVY infection. NbMLP28 was localized to the plasmalemma and nucleus, with the highest level in the root. NbMLP28 gene was hypothesized to be triggered by PVY infection and was highly expressed in jasmonic acid (JA) signaling pathway. Further validation was achieved through silencing of NbMLP28 through virus-induced gene silencing (VIGS) that rendered N. benthamiana plants more vulnerable to PVY infection, contrary to overexpression that enhanced resistance.Conclusions: Taken together, this is the first study describing the role of NbMLP28 in tobacco against PVY infection and provide a pivotal point towards obtaining pathogen-resistant tobacco varieties through constructing new candidate genes of MLP subfamily.


Author(s):  
Hien Thi Thu Le ◽  
Akshaya Murugesan ◽  
Nuno R Candeias ◽  
Olli Yli-Harja ◽  
Meenakshisundaram Kandhavelu

Background: (1-(2-hydroxy-5-nitrophenyl)(4-hydroxyphenyl)methyl)indoline-4-carbonitrile (HIC), an agonist of the P2Y1 receptor (P2Y1R), induces cell death in prostate cancer cells. However, the molecular mechanism behind the inhibition of HIC in prostate cancer remains elusive. Methods and results: Here, to outline the inhibitory role of HIC on prostate cancer cells, PC-3 and DU145 cell lines were treated with the respective IC50 concentrations, which reduced cell proliferation, adherence properties and spheroid formation. HIC was able to arrest the cell cycle at G1/S phase and also induced apoptosis and DNA damage, validated by gene expression profiling. HIC inhibited the prostate cancer cells’ migration and invasion, revealing its antimetastatic ability. P2Y1R-targeted HIC affects p53, MAPK and NF-κB protein expression, thereby improving the p53 stabilization essential for G1/S arrest and cell death. Conclusion: These findings provide an insight on the potential use of HIC, which remains the mainstay treatment for prostate cancer.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tiantian Tang ◽  
Guiying Wang ◽  
Sihua Liu ◽  
Zhaoxue Zhang ◽  
Chen Liu ◽  
...  

AbstractThe role of organic anion transporting polypeptide 1B3 (SLCO1B3) in breast cancer is still controversial. The clinical immunohistochemical results showed that a greater proportion of patients with negative lymph nodes, AJCC stage I, and histological grade 1 (P < 0.05) was positively correlated with stronger expression of SLCO1B3, and DFS and OS were also increased significantly in these patients (P = 0.041, P = 0.001). Further subgroup analysis showed that DFS and OS were significantly enhanced with the increased expression of SLCO1B3 in the ER positive subgroup. The cellular function assay showed that the ability of cell proliferation, migration and invasion was significantly enhanced after knockdown of SLCO1B3 expression in breast cancer cell lines. In contrast, the ability of cell proliferation, migration and invasion was significantly reduced after overexpress the SLCO1B3 in breast cancer cell lines (P < 0.05). Overexpression or knockdown of SLCO1B3 had no effect on the apoptotic ability of breast cancer cells. High level of SLCO1B3 expression can inhibit the proliferation, invasion and migration of breast cancer cells, leading to better prognosis of patients. The role of SLCO1B3 in breast cancer may be related to estrogen. SLCO1B3 will become a potential biomarker for breast cancer diagnosis and prognosis assessment.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chen Hang ◽  
Shanojie Zhao ◽  
Tiejun Wang ◽  
Yan Zhang

Abstract Background Breast cancer (BrCa) is the most common female malignancy worldwide and has the highest morbidity among all cancers in females. Unfortunately, the mechanisms of BrCa growth and metastasis, which lead to a poor prognosis in BrCa patients, have not been well characterized. Methods Immunohistochemistry (IHC) was performed on a BrCa tissue microarray (TMA) containing 80 samples to evaluate ubiquitin protein ligase E3C (UBE3C) expression. In addition, a series of cellular experiments were conducted to reveal the role of UBE3C in BrCa. Results In this research, we identified UBE3C as an oncogenic factor in BrCa growth and metastasis for the first time. UBE3C expression was upregulated in BrCa tissues compared with adjacent breast tissues. BrCa patients with high nuclear UBE3C expression in tumors showed remarkably worse overall survival (OS) than those with low nuclear expression. Knockdown of UBE3C expression in MCF-7 and MDA-MB-453 BrCa cells inhibited cell proliferation, migration and invasion in vitro, while overexpression of UBE3C in these cells exerted the opposite effects. Moreover, UBE3C promoted β-catenin nuclear accumulation, leading to the activation of the Wnt/β-catenin signaling pathway in BrCa cells. Conclusion Collectively, these results imply that UBE3C plays crucial roles in BrCa development and progression and that UBE3C may be a novel target for the prevention and treatment of BrCa.


2006 ◽  
Vol 74 (7) ◽  
pp. 3742-3755 ◽  
Author(s):  
Lakshmi Pillai ◽  
Jian Sha ◽  
Tatiana E. Erova ◽  
Amin A. Fadl ◽  
Bijay K. Khajanchi ◽  
...  

ABSTRACT Human diseases caused by species of Aeromonas have been classified into two major groups: septicemia and gastroenteritis. In this study, we reported the molecular and functional characterization of a new virulence factor, ToxR-regulated lipoprotein, or TagA, from a diarrheal isolate, SSU, of Aeromonas hydrophila. The tagA gene of A. hydrophila exhibited 60% identity with that of a recently identified stcE gene from Escherichia coli O157:H7, which encoded a protein (StcE) that provided serum resistance to the bacterium and prevented erythrocyte lysis by controlling classical pathway of complement activation by cleaving the complement C1-esterase inhibitor (C1-INH). We purified A. hydrophila TagA as a histidine-tagged fusion protein (rTagA) from E. coli DE3 strain using a T7 promoter-based pET30 expression vector and nickel affinity column chromatography. rTagA cleaved C1-INH in a time-dependent manner. The tagA isogenic mutant of A. hydrophila, unlike its corresponding wild-type (WT) or the complemented strain, was unable to cleave C1-INH, which is required to potentiate the C1-INH-mediated lysis of host and bacterial cells. We indeed demonstrated colocalization of C1-INH and TagA on the bacterial surface by confocal fluorescence microscopy, which ultimately resulted in increased serum resistance of the WT bacterium. Likewise, we delineated the role of TagA in contributing to the enhanced ability of C1-INH to inhibit the classical complement-mediated lysis of erythrocytes. Importantly, we provided evidence that the tagA mutant was significantly less virulent in a mouse model of infection (60%) than the WT bacterium at two 50% lethal doses, which resulted in 100% mortality within 48 h. Taken together, our data provided new information on the role of TagA as a virulence factor in bacterial pathogenesis. This is the first report of TagA characterization from any species of Aeromonas.


2020 ◽  
Vol 21 (8) ◽  
pp. 2934 ◽  
Author(s):  
Magdalena Surman ◽  
Sylwia Kędracka-Krok ◽  
Dorota Hoja-Łukowicz ◽  
Urszula Jankowska ◽  
Anna Drożdż ◽  
...  

Cutaneous melanoma (CM) is an aggressive type of skin cancer for which effective biomarkers are still needed. Recently, the protein content of extracellular vesicles (ectosomes and exosomes) became increasingly investigated in terms of its functional role in CM and as a source of novel biomarkers; however, the data concerning the proteome of CM-derived ectosomes is very limited. We used the shotgun nanoLC–MS/MS approach to the profile protein content of ectosomes from primary (WM115, WM793) and metastatic (WM266-4, WM1205Lu) CM cell lines. Additionally, the effect exerted by CM ectosomes on recipient cells was assessed in terms of cell proliferation (Alamar Blue assay) and migratory properties (wound healing assay). All cell lines secreted heterogeneous populations of ectosomes enriched in the common set of proteins. A total of 1507 unique proteins were identified, with many of them involved in cancer cell proliferation, migration, escape from apoptosis, epithelial–mesenchymal transition and angiogenesis. Isolated ectosomes increased proliferation and motility of recipient cells, likely due to the ectosomal transfer of different cancer-promoting molecules. Taken together, these results confirm the significant role of ectosomes in several biological processes leading to CM development and progression, and might be used as a starting point for further studies exploring their diagnostic and prognostic potential.


Sign in / Sign up

Export Citation Format

Share Document