scholarly journals Metropolitan age-specific mortality trends at borough and neighbourhood level: The case of Mexico City

2020 ◽  
Author(s):  
Karol Baca-Lopez ◽  
Cristobal Fresno ◽  
Jesus Espinal-Enriquez ◽  
Miriam V. Flores-Merino ◽  
Miguel A. Camacho-Lopez ◽  
...  

Abstract Background Understanding the spatial and temporal patterns of mortality rates in a highly inhomogeneous metropolis, is a matter of public policy interest. In this context, there is no previous study that correlates both spatio-temporal and age-specific mortality rates in Mexico City. Methods Spatio-temporal kriging modelling was used over six age-specific mortality rates (from the years 2000 to 2016 in Mexico City), to gain both spatial (borough and neighbourhood) and temporal (year and trimester) data level description. Resulting data were modelled using time-evolution mixed effect models to unblurred mortality age-specific patterns. Posterior tests were carried out to compare mortality averages between geospatial locations. Results Mortality correlation extends in all study groups for as long as 12 years and as far as 13.27 km. The highest mortality rate takes place in the Cuauhtémoc borough, as it is the commercial, touristic and cultural core downtown Mexico City. On the contrary, Tlalpan borough is the one with the lowest mortality rates in all the study groups. Interestingly, post-productive mortality is the first age-specific cause of death, followed by infant, productive, pre-school and scholar groups. Conclusion The combinations of spatio-temporal Kriging estimation and time-evolution mixed effect models, allowed us to unveil relevant time and location trends that may be useful for public policy planning in Mexico City.

2020 ◽  
Author(s):  
Karol Baca-Lopez ◽  
Cristobal Fresno ◽  
Jesus Espinal-Enriquez ◽  
Miriam V. Flores-Merino ◽  
Miguel A. Camacho-Lopez ◽  
...  

Abstract Background Understanding the spatial and temporal patterns of mortality rates in a highly inhomogeneous metropolis, is a matter of public policy interest. In this context, there is no previous study that correlates both spatio-temporal and age-specific mortality rates in Mexico City. Methods Spatio-temporal kriging modelling was used over six age-specific mortality rates (from the years 2000 to 2016 in Mexico City), to gain both spatial (borough and neighbourhood) and temporal (year and trimester) data level description. Resulting data were modelled using time-evolution mixed effect models to unblurred mortality age-specific patterns. Posterior tests were carried out to compare mortality averages between geospatial locations. Results Mortality correlation extends in all study groups for as long as 12 years and as far as 13.27 km. The highest mortality rate takes place in the Cuauhtémoc borough, as it is the commercial, touristic and cultural core downtown Mexico City. On the contrary, Tlalpan borough is the one with the lowest mortality rates in all the study groups. Interestingly, post-productive mortality is the first age-specific cause of death, followed by infant, productive, pre-school and scholar groups. Conclusion The combinations of spatio-temporal Kriging estimation and time-evolution mixed effect models, allowed us to unveil relevant time and location trends that may be useful for public policy planning in Mexico City.


2020 ◽  
Author(s):  
Karol Baca-Lopez ◽  
Cristobal Fresno ◽  
Jesus Espinal-Enriquez ◽  
Miriam V. Flores-Merino ◽  
Miguel A. Camacho-Lopez ◽  
...  

Abstract BackgroundUnderstanding the spatial and temporal patterns of mortality rates in a highly inhomogeneous metropolis, is a matter of public policy interest. In this context, there is no previous study that correlates both spatio-temporal and age-specific mortality rates in Mexico City. Methods Spatio-temporal kriging modelling was used over six age-specific mortality rates (from the years 2000 to 2016 in Mexico City), to gain both spatial (borough and neighbourhood) and temporal (year and trimester) data level description. Resulting data were modelled using time-evolution mixed effect models to unblurred mortality age-specific patterns. Posterior tests were carried out to compare mortality averages between geospatial locations. Results Mortality correlation extends in all study groups for as long as 12 years and as far as 13.27 km. The highest mortality rate takes place in the Cuauhtémoc borough, as it is the commercial, touristic and cultural core downtown Mexico City. On the contrary, Tlalpan borough is the one with the lowest mortality rates in all the study groups. Interestingly, post-productive mortality is the first age-specific cause of death, followed by infant, productive, pre-school and scholar groups. Conclusion The combinations of spatio-temporal Kriging estimation and time-evolution mixed effect models, allowed us to unveil relevant time and location trends that may be useful for public policy planning in Mexico City.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244384
Author(s):  
Karol Baca-López ◽  
Cristóbal Fresno ◽  
Jesús Espinal-Enríquez ◽  
Miriam V. Flores-Merino ◽  
Miguel A. Camacho-López ◽  
...  

Understanding the spatial and temporal patterns of mortality rates in a highly heterogeneous metropolis, is a matter of public policy interest. In this context, there is no, to the best of our knowledge, previous studies that correlate both spatio-temporal and age-specific mortality rates in Mexico City. Spatio-temporal Kriging modeling was used over five age-specific mortality rates (from the years 2000 to 2016 in Mexico City), to gain both spatial (borough and neighborhood) and temporal (year and trimester) data level description. Mortality age-specific patterns have been modeled using multilevel modeling for longitudinal data. Posterior tests were carried out to compare mortality averages between geo-spatial locations. Mortality correlation extends in all study groups for as long as 12 years and as far as 13.27 km. The highest mortality rate takes place in the Cuauhtémoc borough, the commercial, touristic and cultural core downtown of Mexico City. On the contrary, Tlalpan borough is the one with the lowest mortality rates in all the study groups. Post-productive mortality is the first age-specific cause of death, followed by infant, productive, pre-school and scholar groups. The combinations of spatio-temporal Kriging estimation and time-evolution linear mixed-effect models, allowed us to unveil relevant time and location trends that may be useful for public policy planning in Mexico City.


2018 ◽  
Author(s):  
Jonathan Minton

This project will introduce ways of reasoning about mortality trends over the Lexis surface, for different populations, and how these contribute to health inequalities between countries and other social groups


2020 ◽  
Author(s):  
Gurusamy Kutralam-Muniasamy ◽  
Fermín Pérez-Guevara ◽  
Priyadarsi D. Roy ◽  
I. Elizalde-Martínez ◽  
V.C. Shruti

Abstract Mexico City is the second most populated city in Latin America, and it went through two partial lockdowns between April 1 and May 31, 2020 for reducing the COVID-19 propagation. The present study assessed air quality and its association with human mortality rates during the lockdown by estimating changes observed in air pollutants (CO, NO2, O3, SO2, PM10 and PM2.5) between the lockdown (April 1 - May 31) and pre-lockdown (January 1 – March 31) periods, as well as by comparing the air quality data of lockdown period with the same interval of previous five-years (2015-2019). Concentrations of NO2 (-29%), SO2 (-55%) and PM10 (-11%) declined and the contents of CO (+1.1%), PM2.5 (+19%) and O3 (+63%) increased during the lockdown compared to the pre-lockdown period. This study also estimated that NO2, SO2, CO, PM10 and PM2.5 reduced by 19-36%, and O3 enhanced by 14% compared to the average of 2015-2019. Reduction in traffic as well as less emission from vehicle exhausts led to remarkable decline in NO2, SO2 and PM10. The significant positive associations of PM2.5, CO and O3 with the numbers of COVID-19 infections and deaths, however, underscored the necessity to enforce air pollution regulations to protect human health in one of the important cities of the northern hemisphere.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Alejandro Lome-Hurtado ◽  
Jacques Lartigue-Mendoza ◽  
Juan C. Trujillo

Abstract Background Globally, child mortality rate has remained high over the years, but the figure can be reduced through proper implementation of spatially-targeted public health policies. Due to its alarming rate in comparison to North American standards, child mortality is particularly a health concern in Mexico. Despite this fact, there remains a dearth of studies that address its spatio-temporal identification in the country. The aims of this study are i) to model the evolution of child mortality risk at the municipality level in Greater Mexico City, (ii) to identify municipalities with high, medium, and low risk over time, and (iii) using municipality trends, to ascertain potential high-risk municipalities. Methods In order to control for the space-time patterns of data, the study performs a Bayesian spatio-temporal analysis. This methodology permits the modelling of the geographical variation of child mortality risk across municipalities, within the studied time span. Results The analysis shows that most of the high-risk municipalities were in the east, along with a few in the north and west areas of Greater Mexico City. In some of them, it is possible to distinguish an increasing trend in child mortality risk. The outcomes highlight municipalities currently presenting a medium risk but liable to become high risk, given their trend, after the studied period. Finally, the likelihood of child mortality risk illustrates an overall decreasing tendency throughout the 7-year studied period. Conclusions The identification of high-risk municipalities and risk trends may provide a useful input for policymakers seeking to reduce the incidence of child mortality. The results provide evidence that supports the use of geographical targeting in policy interventions.


2021 ◽  
Vol 6 (5) ◽  
pp. e005387
Author(s):  
Tim Adair ◽  
Sonja Firth ◽  
Tint Pa Pa Phyo ◽  
Khin Sandar Bo ◽  
Alan D Lopez

IntroductionThe measurement of progress towards many Sustainable Development Goals (SDG) and other health goals requires accurate and timely all-cause and cause of death (COD) data. However, existing guidance to countries to calculate these indicators is inadequate for populations with incomplete death registration and poor-quality COD data. We introduce a replicable method to estimate national and subnational cause-specific mortality rates (and hence many such indicators) where death registration is incomplete by integrating data from Medical Certificates of Cause of Death (MCCOD) for hospital deaths with routine verbal autopsy (VA) for community deaths.MethodsThe integration method calculates population-level cause-specific mortality fractions (CSMFs) from the CSMFs of MCCODs and VAs weighted by estimated deaths in hospitals and the community. Estimated deaths are calculated by applying the empirical completeness method to incomplete death registration/reporting. The resultant cause-specific mortality rates are used to estimate SDG Indicator 23: mortality between ages 30 and 70 years from cardiovascular diseases, cancers, chronic respiratory diseases and diabetes. We demonstrate the method using nationally representative data in Myanmar, comprising over 42 000 VAs and 7600 MCCODs.ResultsIn Myanmar in 2019, 89% of deaths were estimated to occur in the community. VAs comprised an estimated 70% of community deaths. Both the proportion of deaths in the community and CSMFs for the four causes increased with older age. We estimated that the probability of dying from any of the four causes between 30 and 70 years was 0.265 for men and 0.216 for women. This indicator is 50% higher if based on CSMFs from the integration of data sources than on MCCOD data from hospitals.ConclusionThis integration method facilitates country authorities to use their data to monitor progress with national and subnational health goals, rather than rely on estimates made by external organisations. The method is particularly relevant given the increasing application of routine VA in country Civil Registration and Vital Statistics systems.


Author(s):  
Michelle Elaine Orme ◽  
Carmen Andalucia ◽  
Sigrid Sjölander ◽  
Xavier Bossuyt

AbstractObjectivesTo compare indirect immunofluorescence (IIF) for antinuclear antibodies (ANA) against immunoassays (IAs) as an initial screening test for connective tissue diseases (CTDs).MethodsA systematic literature review identified cross-sectional or case-control studies reporting test accuracy data for IIF and enzyme-linked immunosorbent assays (ELISA), fluorescence enzyme immunoassay (FEIA), chemiluminescent immunoassay (CLIA) or multiplex immunoassay (MIA). The meta-analysis used hierarchical, bivariate, mixed-effect models with random-effects by test.ResultsDirect comparisons of IIF with ELISA showed that both tests had good sensitivity (five studies, 2321 patients: ELISA: 90.3% [95% confidence interval (CI): 80.5%, 95.5%] vs. IIF at a cut-off of 1:80: 86.8% [95% CI: 81.8%, 90.6%]; p = 0.4) but low specificity, with considerable variance across assays (ELISA: 56.9% [95% CI: 40.9%, 71.5%] vs. IIF 1:80: 68.0% [95% CI: 39.5%, 87.4%]; p = 0.5). FEIA sensitivity was lower than IIF sensitivity (1:80: p = 0.005; 1:160: p = 0.051); however, FEIA specificity was higher (seven studies, n = 12,311, FEIA 93.6% [95% CI: 89.9%, 96.0%] vs. IIF 1:80 72.4% [95% CI: 62.2%, 80.7%]; p < 0.001; seven studies, n = 3251, FEIA 93.5% [95% CI: 91.1%, 95.3%] vs. IIF 1:160 81.1% [95% CI: 73.4%, 86.9%]; p < 0.0001). CLIA sensitivity was similar to IIF (1:80) with higher specificity (four studies, n = 1981: sensitivity 85.9% [95% CI: 64.7%, 95.3%]; p = 0.86; specificity 86.1% [95% CI: 78.3%, 91.4%]). More data are needed to make firm inferences for CLIA vs. IIF given the wide prediction region. There were too few studies for the meta-analysis of MIA vs. IIF (MIA sensitivity range 73.7%–86%; specificity 53%–91%).ConclusionsFEIA and CLIA have good specificity compared to IIF. A positive FEIA or CLIA test is useful to support the diagnosis of a CTD. A negative IIF test is useful to exclude a CTD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fabio Masina ◽  
Giorgio Arcara ◽  
Eleonora Galletti ◽  
Isabella Cinque ◽  
Luciano Gamberini ◽  
...  

AbstractHigh-definition transcranial direct current stimulation (HD-tDCS) seems to overcome a drawback of traditional bipolar tDCS: the wide-spread diffusion of the electric field. Nevertheless, most of the differences that characterise the two techniques are based on mathematical simulations and not on real, behavioural and neurophysiological, data. The study aims to compare a widespread tDCS montage (i.e., a Conventional bipolar montage with extracephalic return electrode) and HD-tDCS, investigating differences both at a behavioural level, in terms of dexterity performance, and a neurophysiological level, as modifications of alpha and beta power as measured with EEG. Thirty participants took part in three sessions, one for each montage: Conventional tDCS, HD-tDCS, and sham. In all the conditions, the anode was placed over C4, while the cathode/s placed according to the montage. At baseline, during, and after each stimulation condition, dexterity was assessed with a Finger Tapping Task. In addition, resting-state EEG was recorded at baseline and after the stimulation. Power spectrum density was calculated, selecting two frequency bands: alpha (8–12 Hz) and beta (18–22 Hz). Linear mixed effect models (LMMs) were used to analyse the modulation induced by tDCS. To evaluate differences among the montages and consider state-dependency phenomenon, the post-stimulation measurements were covariate-adjusted for baseline levels. We observed that HD-tDCS induced an alpha power reduction in participants with lower alpha at baseline. Conversely, Conventional tDCS induced a beta power reduction in participants with higher beta at baseline. Furthermore, data showed a trend towards a behavioural effect of HD-tDCS in participants with lower beta at baseline showing faster response times. Conventional and HD-tDCS distinctively modulated cortical activity. The study highlights the importance of considering state-dependency to determine the effects of tDCS on individuals.


Sign in / Sign up

Export Citation Format

Share Document