scholarly journals Strategies adopted by Aphanizomenon flos-aquae in response to phosphorus deficiency and their role on growth

2020 ◽  
Author(s):  
Xiaoyan Chen ◽  
Iva Dolinova ◽  
Alena Sevcu ◽  
Tomasz Jurczak ◽  
Piotr Frankiewicz ◽  
...  

Abstract Background The N2-fixing cyanobacterium, Aphanizomenon flos-aquae is a globally distributed bloom causing species that degrades water quality of fresh and marine water bodies. Overcoming phosphorus (P) deficiency is one of the ecological advantages for bloom forming cyanobacteria. It remains unclear to what extent can A. flos-aquae alleviate P deficiency by regulating P using strategies. Results Based on in situ observations of extracellular alkaline phosphatase (APase) in A. flos-aquae via enzyme-labeled fluorescence in freshwater bodies in China, Poland and Czechia, we further investigated responses of isolated A. flos-aquae to different P supplies (dissolved inorganic P (Pi) as +DIP, dissolved organic α-glycerophosphate and β-glycerophosphate as +DOPα and +DOPβ, P-free condition as P-depleted). The significantly negative relationships between percentage of APase producing cells and soluble reactive P concentration in both fields and cultures suggested that the excretion of APase in cyanobacterium was regulated by ambient Pi supply. Suffering from P deficiency in the P-depleted treatments, A. flos-aquae showed the highest APase activity but a vigorous growth at the early culture stage, which might also benefit from the formation of polyphosphate body (PPB) and the decrease of cell P quota. In the +DOP treatments, the coordination of dissolved DOP mineralization and continuous prompt utilization of PPB might contribute to a maintenance but not reproduction of A. flos-aquae when relying on DOP, since the specific growth rate kept around 0 cells L-1 day-1 at the second half culture period and the highest cell density reached only 13.38% of that in +DIP treatments while photochemical efficiency was comparable during the whole experiment. Luxury uptake of phosphate as PPB in the +DIP treatments was consistent to the canonical view of polyphosphate as P storage. Conclusion A. flos-aquae could achieve an instantaneous growth in response to P deficiency with the coordination of P utilization strategies, while it maintained a long-term sustainable growth but not reproduction under sole DOP supply. Persistent and active reproduction could only be achieved in high Pi supply, which implying that an effective consequence can be expected for combating the bloom of A. flos-aquae when controlling P supply.

2020 ◽  
Author(s):  
Xiaoyan Chen ◽  
Iva Dolinova ◽  
Alena Sevcu ◽  
Tomasz Jurczak ◽  
Piotr Frankiewicz ◽  
...  

Abstract Background: The N2-fixing cyanobacterium, Aphanizomenon flos-aquae is a globally distributed bloom causing species that degrades water quality of freshwater and ocean worldwide. Overcoming phosphorus (P) deficiency is one of the ecological advantages for bloom forming cyanobacteria. It remains unclear to what extent can A. flos-aquae alleviate P deficiency by regulating P using strategies.Results: Based on in situ observations of extracellular alkaline phosphatase (APase) in A. flos-aquae via enzyme-labeled fluorescence in freshwater bodies in China, Poland and Czechia, we further investigated responses of isolated A. flos-aquae to different P supplies (sufficient inorganic P (Pi) as +DIP, α-glycerophosphate and β-glycerophosphate as +DOPα and +DOPβ, P-free condition as -P). The significantly negative relationships between percentage of APase producing cells and soluble reactive P concentration in fields and cultures respectively suggested that the excretion of APase was regulated by ambient Pi supply. Suffering from extreme P deficiency in the -P treatments, A. flos-aquae showed the highest APase activity reaching a vigorous growth at the early stage, which might also benefit from the formation of polyphosphate body (PPB) and the decrease of cellular P content. In the +DOP treatments, the coordination of dissolved organic P (DOP) mineralization and continuous utilization and formation of PPB might contribute to a maintenance but not reproduction of A. flos-aquae when relying on DOP, since the highest cell density reached only 13.38% of that in +DIP treatments while photochemical efficiency was comparable during the whole experiment. Luxury uptake of phosphate as PPB in the +DIP treatments was consistent to the canonical view of polyphosphate as P storage. Conclusion: A. flos-aquae could achieve an instantaneous growth in response to P deficiency with the coordination of P utilization strategies, while only a long-term sustainable growth could be maintained under DOP condition. Persistent and active reproduction could only be achieved in high Pi supply, which implying that an effective consequence can be expected for combating the bloom of A. flos-aquae when controlling P supply.


2020 ◽  
Author(s):  
Jiajia Luo ◽  
Yunxi Liu ◽  
Huikai Zhang ◽  
Jinpeng Wang ◽  
Zhijian Chen ◽  
...  

Abstract Background: Phosphorus (P) deficiency is one of the major constraints limiting plant growth, especially in acid soils. Stylosanthes (stylo) is a pioneer tropical legume with excellent adaptability to low P stress, but its underlying mechanisms remain largely unknown.Results: In this study, the physiological, molecular and metabolic changes in stylo responding to phosphate (Pi) starvation were investigated. Under low P condition, the growth of stylo root was enhanced, which was attributed to the up-regulation of expansin genes participating in root growth. Metabolic profiling analysis showed that a total of 256 metabolites with differential accumulations were identified in stylo roots response to P deficiency, which mainly included flavonoids, sugars, nucleotides, amino acids, phenylpropanoids and phenylamides. P deficiency led to significant reduction in the accumulation of phosphorylated metabolites (e.g., P-containing sugars, nucleotides and cholines), suggesting that internal P utilization was enhanced in stylo roots subjected to low P stress. However, flavonoid metabolites, such as kaempferol, daidzein and their glycoside derivatives, were increased in P-deficient stylo roots. Furthermore, the qRT-PCR analysis showed that a set of genes involved in flavonoids synthesis were found to be up-regulated by Pi starvation in stylo roots. In addition, the abundances of phenolic acids and phenylamides were significantly increased in stylo roots during P deficiency. The increased accumulation of the metabolites in stylo roots, such as flavonoids, phenolic acids and phenylamides, might facilitate P solubilization and cooperate with beneficial microorganisms in rhizosphere, and thus contributing to P acquisition and utilization in stylo.Conclusions: These results suggest that stylo plants cope with P deficiency by modulating root morphology, scavenging internal Pi from phosphorylated metabolites and increasing accumulation of flavonoids, phenolic acids and phenylamides. This study provides valuable insights into the complex responses and adaptive mechanisms of stylo roots to P deficiency.


2010 ◽  
Vol 135 (2) ◽  
pp. 108-115 ◽  
Author(s):  
Yan Zhang ◽  
Cuiyue Liang ◽  
Yan Xu ◽  
Thomas Gianfagna ◽  
Bingru Huang

The objective of the study was to determine whether the expression of a cytokinin (CK) biosynthesis gene encoding adenine isopentenyl transferase (ipt) would delay or suppress leaf senescence induced by nitrogen (N) or phosphorus (P) deficiency in a C3 grass species, creeping bentgrass (Agrostis stolonifera). The ipt gene was ligated to a senescence-associated promoter, SAG12, and was transferred into creeping bentgrass using an agrobacterium (Agrobacterium tumefaciens)-mediated transformation technique. Plants from an SAG12-ipt transgenic line (S41) and a null transformant (NT) control line were grown in nutrient solutions with all essential elements or without N (−N) or P (−P) for 21 days. Significant declines in leaf photochemical efficiency (Fv/Fm) and chlorophyll content of mature leaves were detected in NT and SAG12-ipt plants exposed to N or P deficiency. Compared to the NT control line, SAG12-ipt plants had higher levels of Fv/Fm, chlorophyll, and CK contents in leaves, and these differences between the NT control and SAG12-ipt line became more pronounced with treatment duration. The ipt expression was detected in the −P-treated and the −N-treated plants after 21 days, although the level of expression decreased under N or P deficiency. Under −P treatment, root acid phosphatase activity was greater in SAG12-ipt line than in the NT control line. No significant differences in nitrate reductase activity were detected in leaves or roots between the SAG12-ipt and the NT control lines. Our results demonstrated that SAG12-ipt expression suppressed leaf senescence induced by N or P deficiency in a perennial grass species. The suppressing effects on leaf senescence under P deficiency may be related to CK regulation of more efficient use of P in roots of the SAG12-ipt plants.


2019 ◽  
Author(s):  
Jiajia Luo ◽  
Yunxi Liu ◽  
Huikai Zhang ◽  
Jinpeng Wang ◽  
Zhijian Chen ◽  
...  

Abstract Background: Phosphorus (P) deficiency is one of the major constraints limiting plant growth, especially in acid soils. Stylosanthes (stylo) is a pioneer tropical legume with excellent adaptability to low P stress, but its underlying mechanisms remain largely unknown. Results: In this study, the physiological, molecular and metabolic changes in stylo responding to phosphate (Pi) starvation were investigated. Under low P condition, the root growth in stylo was significantly enhanced, which was accompanied with up-regulation of expansin genes participating in cell wall loosening. Metabolic profiling analysis showed that a total of 256 metabolites with differential accumulation were identified in stylo roots responding to P deficiency, which mainly include flavonoids, sugars, nucleotides, amino acids, phenylpropanoids and phenylamides. P deficiency led to significant reduction in the accumulation of phosphorylated metabolites (e.g., P-containing sugars, nucleotides and cholines), suggesting that internal P utilization was enhanced in stylo roots. However, flavonoid metabolites, such as kaempferol, daidzein and their glycoside derivatives, were significantly increased in P-deficient stylo roots. Furthermore, the transcripts of various genes involved in flavonoids synthesis were found to be up-regulated by Pi starvation in stylo roots. In addition, the abundance of phenolic acids and phenylamides was significantly increased in stylo roots during P deficiency. The enhanced accumulation of the metabolites in stylo roots, such as flavonoids, phenolic acids and phenylamides, might facilitate P solubilization and cooperate with beneficial microorganisms in rhizosphere, and thus contributing to P acquisition and utilization in stylo. Conclusions: These results suggest that stylo plants cope with P deficiency by modulating root morphology, scavenging internal Pi from phosphorylated metabolites and enhancing accumulation of flavonoids, phenolic acids and phenylamides. This study provides valuable insights into the complex responses and adaptive mechanisms of stylo to P deficiency.


2020 ◽  
Author(s):  
Jiajia Luo ◽  
Yunxi Liu ◽  
Huikai Zhang ◽  
Jinpeng Wang ◽  
Zhijian Chen ◽  
...  

Abstract Background: Phosphorus (P) deficiency is one of the major constraints limiting plant growth, especially in acid soils. Stylosanthes (stylo) is a pioneer tropical legume with excellent adaptability to low P stress, but its underlying mechanisms remain largely unknown. Results: In this study, the physiological, molecular and metabolic changes in stylo responding to phosphate (Pi) starvation were investigated. Under low P condition, the root growth in stylo was significantly enhanced, which was accompanied with up-regulation of expansin genes participating in cell wall loosening. Metabolic profiling analysis showed that a total of 256 metabolites with differential accumulation were identified in stylo roots responding to P deficiency, which mainly include flavonoids, sugars, nucleotides, amino acids, phenylpropanoids and phenylamides. P deficiency led to significant reduction in the accumulation of phosphorylated metabolites (e.g., P-containing sugars, nucleotides and cholines), suggesting that internal P utilization was enhanced in stylo roots. However, flavonoid metabolites, such as kaempferol, daidzein and their glycoside derivatives, were significantly increased in P-deficient stylo roots. Furthermore, the transcripts of various genes involved in flavonoids synthesis were found to be up-regulated by Pi starvation in stylo roots. In addition, the abundance of phenolic acids and phenylamides was significantly increased in stylo roots during P deficiency. The enhanced accumulation of the metabolites in stylo roots, such as flavonoids, phenolic acids and phenylamides, might facilitate P solubilization and cooperate with beneficial microorganisms in rhizosphere, and thus contributing to P acquisition and utilization in stylo. Conclusions: These results suggest that stylo plants cope with P deficiency by modulating root morphology, scavenging internal Pi from phosphorylated metabolites and enhancing accumulation of flavonoids, phenolic acids and phenylamides. This study provides valuable insights into the complex responses and adaptive mechanisms of stylo to P deficiency.


2020 ◽  
Author(s):  
Jiajia Luo ◽  
Yunxi Liu ◽  
Huikai Zhang ◽  
Jinpeng Wang ◽  
Zhijian Chen ◽  
...  

Abstract Background: Phosphorus (P) deficiency is one of the major constraints limiting plant growth, especially in acid soils. Stylosanthes (stylo) is a pioneer tropical legume with excellent adaptability to low P stress, but its underlying mechanisms remain largely unknown. Results: In this study, the physiological, molecular and metabolic changes in stylo responding to phosphate (Pi) starvation were investigated. Under low P condition, the root growth in stylo was significantly enhanced, which was accompanied with up-regulation of expansin genes participating in cell wall loosening. Metabolic profiling analysis showed that a total of 256 metabolites with differential accumulation were identified in stylo roots responding to P deficiency, which mainly include flavonoids, sugars, nucleotides, amino acids, phenylpropanoids and phenylamides. P deficiency led to significant reduction in the accumulation of phosphorylated metabolites (e.g., P-containing sugars, nucleotides and cholines), suggesting that internal P utilization was enhanced in stylo roots. However, flavonoid metabolites, such as kaempferol, daidzein and their glycoside derivatives, were significantly increased in P-deficient stylo roots. Furthermore, the transcripts of various genes involved in flavonoids synthesis were found to be up-regulated by Pi starvation in stylo roots. In addition, the abundance of phenolic acids and phenylamides was significantly increased in stylo roots during P deficiency. The enhanced accumulation of the metabolites in stylo roots, such as flavonoids, phenolic acids and phenylamides, might facilitate P solubilization and cooperate with beneficial microorganisms in rhizosphere, and thus contributing to P acquisition and utilization in stylo. Conclusions: These results suggest that stylo plants cope with P deficiency by modulating root morphology, scavenging internal Pi from phosphorylated metabolites and enhancing accumulation of flavonoids, phenolic acids and phenylamides. This study provides valuable insights into the complex responses and adaptive mechanisms of stylo to P deficiency.


1984 ◽  
Vol 41 (11) ◽  
pp. 1601-1608 ◽  
Author(s):  
L. L. Hendzel ◽  
F. P. Healey

We compared ATP samples collected by direct injection with those collected by filtration from exponential and P-limited algal cultures, and from summer populations of several lakes. The direct injection method yielded higher amounts of measurable ATP than did filtration on 2.5- and 4.5-cm diameter membrane filters. ATP lost to the filtrate was negligible. Variation in ATP content with increasing nutrient deficiency was measured on six cultures. ATP/C decreased with N deficiency and to a greater degree with P deficiency. Large changes of ATP/C usually occurred with little change in viability of the cells. Short-term (1 h) nutrient enrichments generally did not change the ATP/C ratio. Phosphorus deficiency tended to increase the chlorophyll/ATP ratio and N deficiency to decrease it. We found that the short- and long-term effects of alkaline phosphatase on ATP extracts from P-sufficient and P-deficient Scenedesmus quadricauda were negligible. There appeared to be little effect on frozen ATP samples stored up to 60 d. Any short-term effects were similarly negligible, since temperature and the addition of P did not affect the rate of ATP loss. The use of 0.33 mol H3PO4∙L−1 as an extractant proved to be completely unreliable.


2019 ◽  
Author(s):  
Jiajia Luo ◽  
Yunxi Liu ◽  
Huikai Zhang ◽  
Jinpeng Wang ◽  
Zhijian Chen ◽  
...  

Abstract Background: Phosphorus (P) deficiency is one of the major constraints limiting plant growth, especially in acid soils. Stylosanthes (stylo) is a pioneer tropical legume with excellent adaptability to low P stress, but its underlying mechanisms remain largely unknown. Results: In this study, the physiological, molecular and metabolic changes in stylo responding to phosphate (Pi) starvation were investigated. Under low P condition, the root growth in stylo was significantly enhanced, which was accompanied with up-regulation of expansin genes participating in cell wall loosening. Metabolic profiling analysis showed that a total of 256 metabolites with differential accumulation were identified in stylo roots responding to P deficiency, which mainly include flavonoids, sugars, nucleotides, amino acids, phenylpropanoids and phenylamides. P deficiency led to significant reduction in the accumulation of phosphorylated metabolites (e.g., P-containing sugars, nucleotides and cholines), suggesting that internal P utilization was enhanced in stylo roots. However, flavonoid metabolites, such as kaempferol, daidzein and their glycoside derivatives, were significantly increased in P-deficient stylo roots. Furthermore, the transcripts of various genes involved in flavonoids synthesis were found to be up-regulated by Pi starvation in stylo roots. In addition, the abundance of phenolic acids and phenylamides was significantly increased in stylo roots during P deficiency. The enhanced accumulation of the metabolites in stylo roots, such as flavonoids, phenolic acids and phenylamides, might facilitate P solubilization and cooperate with beneficial microorganisms in rhizosphere, and thus contributing to P acquisition and utilization in stylo. Conclusions: These results suggest that stylo plants cope with P deficiency by modulating root morphology, scavenging internal Pi from phosphorylated metabolites and enhancing accumulation of flavonoids, phenolic acids and phenylamides. This study provides valuable insights into the complex responses and adaptive mechanisms of stylo to P deficiency.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1401
Author(s):  
Venkata Ravi Prakash Reddy ◽  
Shouvik Das ◽  
Harsh Kumar Dikshit ◽  
Gyan Prakash Mishra ◽  
Muraleedhar S. Aski ◽  
...  

Mungbean (Vignaradiata L. Wilczek) is an early maturing legume grown predominantly in Asia for its protein-rich seeds. P deficiency can lead to several physiological disorders which ultimately result in a low grain yield in mungbean. The genetic dissection of PUpE (Puptake efficiency) and PUtE (P utilization efficiency) traits are essential for breeding mungbean varieties with a high P uptake and utilization efficiency. The study involves an association mapping panel consisting of 120 mungbean genotypes which were phenotyped for total dry weight, P concentration, total P uptake, and P utilization efficiency under low P (LP) and normal P (NP) conditions in a hydroponic system. A genotyping-by-sequencing (GBS) based genome-wide association study (GWAS) approach was employed to dissect the complexity of PUpE and PUtE traits at the genetic level in mungbean. This has identified 116 SNPs in 61 protein-coding genes and of these, 16 have been found to enhance phosphorous uptake and utilization efficiency in mungbeans. We identified six genes with a high expression (VRADI01G04370, VRADI05G20860, VRADI06G12490, VRADI08G20910, VRADI08G00070 and VRADI09G09030) in root, shoot apical meristem and leaf, indicating their role in the regulation of P uptake and utilization efficiency in mungbean. The SNPs present in three genes have also been validated using a Sanger sequencing approach.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 443
Author(s):  
Elena Širá ◽  
Rastislav Kotulič ◽  
Ivana Kravčáková Vozárová ◽  
Monika Daňová

The Europe 2020 Strategy was proposed with a long-term vision to ensure prosperity, development, and competitiveness for the member countries. This strategy is divided into three main areas named “growth”. One of these is sustainable growth. This is an area of sustainability, where the partial targets are referred to as the “20-20-20 approach”, and includes a reduction of greenhouse gas emissions, an increase in energy efficiency, and the sharing of renewable energy sources. However, questions arise, including: How do member states meet these targets? Which countries are leaders in this area? According to these stated questions, the aim of this article is to assess how EU countries are meeting the set targets for sustainable growth resulting from the Europe 2020 strategy and to identify the countries with the best results in this area. We looked for answers to these questions in the analysis of sustainable indicators, which were transformed into a synthetic measure for comparability of the resulting values. Finally, we identified the Baltic states, Nordic countries (European Union members), Romania, and Croatia as the best countries in fulfilling the sustainable growth aims. As sustainable development and resource efficiency are crucial areas for the future, it is important to consider these issues.


Sign in / Sign up

Export Citation Format

Share Document