scholarly journals Diagnostic biomarker candidates for pulpitis revealed by bioinformatics analysis of merged microarray gene expression datasets

2020 ◽  
Author(s):  
Ming Chen ◽  
Junkai Zeng ◽  
Yeqing Yang ◽  
Buling Wu

Abstract Background: Pulpitis is an inflammatory disease, the grade of which is classified according to the level of inflammation. Traditional methods of evaluating the status of dental pulp tissue in clinical practice have limitations. The rapid and accurate diagnosis of pulpitis is essential for determining the appropriate treatment. By integrating different datasets from the Gene Expression Omnibus (GEO) database, we analysed a merged expression matrix of pulpitis, aiming to identify biological pathways and diagnostic biomarkers of pulpitis. Methods: By integrating two datasets (GSE77459 and GSE92681) in the GEO database using the sva and limma packages of R, differentially expressed genes (DEGs) of pulpitis were identified. Then, the DEGs were analysed to identify biological pathways of dental pulp inflammation with Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and Gene Set Enrichment Analysis (GSEA). Protein–protein interaction (PPI) networks and modules were constructed to identify hub genes with the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and Cytoscape.Results: A total of 470 DEGs comprising 394 upregulated and 76 downregulated genes were found in pulpitis tissue. GO analysis revealed that the DEGs were enriched in biological processes related to inflammation, and the enriched pathways in the KEGG pathway analysis were cytokine-cytokine receptor interaction, chemokine signalling pathway and NF-κB signalling pathway. The GSEA results provided further functional annotations, including complement system, IL6/JAK/STAT3 signalling pathway and inflammatory response pathways. According to the degrees of nodes in the PPI network, 10 hub genes were identified, and 8 diagnostic biomarker candidates were screened: PTPRC, CD86, CCL2, IL6, TLR8, MMP9, CXCL8 and ICAM1.

2020 ◽  
Author(s):  
Ming Chen ◽  
Junkai Zeng ◽  
Yeqing Yang ◽  
Buling Wu

Abstract Background: Pulpitis is an inflammatory disease, the grade of which is classified according to the level of inflammation. Traditional methods of evaluating the status of dental pulp tissue in clinical practice have limitations. The rapid and accurate diagnosis of pulpitis is essential for determining the appropriate treatment. By integrating different datasets from the Gene Expression Omnibus (GEO) database, we analysed a merged expression matrix of pulpitis, aiming to identify biological pathways and diagnostic biomarkers of pulpitis. Methods: By integrating two datasets (GSE77459 and GSE92681) in the GEO database using the sva and limma packages of R, differentially expressed genes (DEGs) of pulpitis were identified. Then, the DEGs were analysed to identify biological pathways of dental pulp inflammation with Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and Gene Set Enrichment Analysis (GSEA). Protein–protein interaction (PPI) networks and modules were constructed to identify hub genes with the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and Cytoscape.Results: A total of 470 DEGs comprising 394 upregulated and 76 downregulated genes were found in pulpitis tissue. GO analysis revealed that the DEGs were enriched in biological processes related to inflammation, and the enriched pathways in the KEGG pathway analysis were cytokine-cytokine receptor interaction, chemokine signalling pathway and NF-κB signalling pathway. The GSEA results provided further functional annotations, including complement system, IL6/JAK/STAT3 signalling pathway and inflammatory response pathways. According to the degrees of nodes in the PPI network, 10 hub genes were identified, and 8 diagnostic biomarker candidates were screened: PTPRC, CD86, CCL2, IL6, TLR8, MMP9, CXCL8 and ICAM1.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Ming Chen ◽  
Junkai Zeng ◽  
Yeqing Yang ◽  
Buling Wu

Abstract Background Pulpitis is an inflammatory disease, the grade of which is classified according to the level of inflammation. Traditional methods of evaluating the status of dental pulp tissue in clinical practice have limitations. The rapid and accurate diagnosis of pulpitis is essential for determining the appropriate treatment. By integrating different datasets from the Gene Expression Omnibus (GEO) database, we analysed a merged expression matrix of pulpitis, aiming to identify biological pathways and diagnostic biomarkers of pulpitis. Methods By integrating two datasets (GSE77459 and GSE92681) in the GEO database using the sva and limma packages of R, differentially expressed genes (DEGs) of pulpitis were identified. Then, the DEGs were analysed to identify biological pathways of dental pulp inflammation with Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and Gene Set Enrichment Analysis (GSEA). Protein–protein interaction (PPI) networks and modules were constructed to identify hub genes with the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and Cytoscape. Results A total of 470 DEGs comprising 394 upregulated and 76 downregulated genes were found in pulpitis tissue. GO analysis revealed that the DEGs were enriched in biological processes related to inflammation, and the enriched pathways in the KEGG pathway analysis were cytokine-cytokine receptor interaction, chemokine signalling pathway and NF-κB signalling pathway. The GSEA results provided further functional annotations, including complement system, IL6/JAK/STAT3 signalling pathway and inflammatory response pathways. According to the degrees of nodes in the PPI network, 10 hub genes were identified, and 8 diagnostic biomarker candidates were screened: PTPRC, CD86, CCL2, IL6, TLR8, MMP9, CXCL8 and ICAM1. Conclusions With bioinformatics analysis of merged datasets, biomarker candidates of pulpitis were screened and the findings may be as reference to develop a new method of pulpitis diagnosis.


2020 ◽  
Author(s):  
Ming Chen ◽  
Junkai Zeng ◽  
Yeqing Yang ◽  
Buling Wu

Abstract Background: Pulpitis is an inflammatory disease, the grade of which is classified according to the level of inflammation. Traditional methods of evaluating the status of dental pulp tissue in clinical practice have limitations. The rapid and accurate diagnosis of pulpitis is essential for determining the appropriate treatment. By integrating different datasets from the Gene Expression Omnibus (GEO) database, we analysed a merged expression matrix of pulpitis, aiming to identify biological pathways and diagnostic biomarkers of pulpitis. Methods: By integrating two datasets (GSE77459 and GSE92681) in the GEO database using the sva and limma packages of R, differentially expressed genes (DEGs) of pulpitis were identified. Then, the DEGs were analysed to identify biological pathways of dental pulp inflammation with Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and Gene Set Enrichment Analysis (GSEA). Protein–protein interaction (PPI) networks and modules were constructed to identify hub genes with the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and Cytoscape.Results: A total of 470 DEGs comprising 394 upregulated and 76 downregulated genes were found in pulpitis tissue. GO analysis revealed that the DEGs were enriched in biological processes related to inflammation, and the enriched pathways in the KEGG pathway analysis were cytokine-cytokine receptor interaction, chemokine signalling pathway and NF-κB signalling pathway. The GSEA results provided further functional annotations, including complement system, IL6/JAK/STAT3 signalling pathway and inflammatory response pathways. According to the degrees of nodes in the PPI network, 10 hub genes were identified, and 8 diagnostic biomarker candidates were screened: PTPRC, CD86, CCL2, IL6, TLR8, MMP9, CXCL8 and ICAM1.Conclusions: With bioinformatics analysis of merged datasets, biomarker candidates of pulpitis were screened and the findings may be as reference to develop a new method of pulpitis diagnosis.


2020 ◽  
Author(s):  
Ming Chen ◽  
Junkai Zeng ◽  
Yeqing Yang ◽  
Buling Wu

Abstract Background Pulpitis is known as an inflammatory disease classified by the level of inflammation. The existed traditional methods of evaluating status of dental pulp tissue in clinical practice still have some shortages and limitations. Immediate and accurate diagnosis of pulpitis is essential to the choice of treatment. Through integrating different datasets from Gene Expression Omnibus (GEO) database, we analyzed the merged expression matrix of pulpitis, aiming to identified biological pathways and diagnostic biomarker of pulpitis.Methods By integrating two datasets (GSE77459 and GSE92681) in GEO database using sva and limma packages, differentially expressed genes (DEGs) of pulpitis were identified. Then DEGs were used to analyze biological pathways of dental pulp inflammation with Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and the Gene Set Enrichment Analysis (GSEA). Protein–protein interaction (PPI) networks and modules were constructed to identify hub genes with the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and Cytoscape.Results A total of 472 DEGs consisting of 396 upregulated and 76 downregulated genes were found in pulpitis tissue. DEGs in GO analysis were enriched in biological processes about inflammation and in KEGG pathway analysis were cytokine-cytokine receptor interaction, chemokine signaling pathway and NF-κB signaling pathway. GSEA results provided further functional annotations including complement system, IL6/JAK/STAT3 signaling pathway and inflammatory response pathways. According to the degrees of nodes in PPI network, 10 hub genes were obtained and 8 diagnostic biomarker candidates were screened, including PTPRC, CD86, CCL2, IL6, TLR8, MMP9, CXCL8 and ICAM1.


2021 ◽  
Author(s):  
Chao Zhang ◽  
Feng Xu ◽  
Fang Fang

Abstract Background: Sepsis-associated acute lung injury (ALI) is a potentially lethal complication associated with a poor prognosis and high mortality worldwide, especially in the outbreak of COVID-19. However, the fundamental mechanisms of this complication were still not fully elucidated. Thus, we conducted this study to identify hub genes and biological pathways of sepsis-associated ALI, mainly focus on two pathways of LPS and HMGB1. Methods: Gene expression profile GSE3037 were downloaded from Gene Expression Omnibus (GEO) database, including 8 patients with sepsis-induced acute lung injury, with 8 unstimulated blood neutrophils, 8 LPS- induced neutrophils and 8 HMGB1-induced neutrophils. Differentially expressed genes (DEGs) identifications, Gene Ontology (GO) function analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis, Gene Set Enrichment Analysis (GSEA) and protein-protein interaction (PPI) network constructions were performed to obtain hub genes and relevant biological pathways.Results: We identified 534 and 317 DEGs for LPS- and HMGB1-induced ALI, respectively. The biological pathways involved in LPS- and HMGB1-induced ALI were also identified accordingly. By PPI network analysis, we found that ten hub genes for LPS-induced ALI (CXCL8, TNF, IL6, IL1B, ICAM1, CXCL1, CXCL2, IL1A, IL1RN and CXCL3) and another ten hub genes for HMGB1-induced ALI (CCL20, CXCL2, CXCL1, CCL4, CXCL3, CXCL9, CCL21, CXCR6, KNG1 and SST). Furthermore, by combining analysis, the results revealed that genes of TNF, CCL20, IL1B, NFKBIA, CCL4, PTGS2, TNFAIP3, CXCL2, CXCL1 and CXCL3 were potential biomarkers for sepsis-associated ALI. Conclusions: Our study revealed that ten hub genes associated with sepsis-induced ALI were TNF, CCL20, IL1B, NFKBIA, CCL4, PTGS2, TNFAIP3, CXCL2, CXCL1 and CXCL3, which may serve as genetic biomarkers and be further verified in prospective experimental trials.


2021 ◽  
Author(s):  
Gang Chen ◽  
Mingwei Yu ◽  
Jianqiao Cao ◽  
Huishan Zhao ◽  
Yuanping Dai ◽  
...  

Abstract Background: Breast cancer (BC) is a malignancy with a high incidence among women in the world, and it is very urgent to identify significant biomarkers and molecular therapy methods.Methods: Total 58 normal tissues and 203 cancer tissues were collected from three Gene Expression Omnibus (GEO) gene expression profiles, and the differential expressed genes (DEGs) were identified. Subsequently, the Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway were analyzed. Additionally, hub genes were screened by constructing a protein-protein interaction (PPI) network. Then, we explored the prognostic values and molecular mechanism of these hub genes Kaplan-Meier (KM) curve and Gene Set Enrichment Analysis (GSEA). Results: 42 up-regulated and 82 down-regulated DEGs were screened out from GEO datasets. GO and KEGG pathway analysis revealed that DEGs were mainly related to cell cycles and cell proliferation. Furthermore, 12 hub genes (FN1, AURKA, CCNB1, BUB1B, PRC1, TPX2, NUSAP1, TOP2A, KIF20A, KIF2C, RRM2, ASPM) with a high degree of genes were selected, among which, 11 hub gene were significantly correlated with the prognosis of patients with BC. From GSEA reviewed correlated with KEGG_CELL_CYCLE and HALLMARK_P53_PATHWAY. Conclusion: this study identified 11 key genes as BC potential prognosis biomarkers on the basis of integrated bioinformatics analysis. This finding will improve our knowledge of the BC progress and mechanisms.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10265
Author(s):  
Hanying Dai ◽  
Lihuang Guo ◽  
Mingyue Lin ◽  
Zhenbo Cheng ◽  
Jiancheng Li ◽  
...  

Background Melanoma is a malignant tumor of melanocytes, and the incidence has increased faster than any other cancer over the past half century. Most primary melanoma can be cured by local excision, but metastatic melanoma has a poor prognosis. Cutaneous melanoma (CM) is prone to metastasis, so the research on the mechanism of melanoma occurrence and metastasis will be beneficial to diagnose early, improve treatment, and prolong life survival. In this study, we compared the gene expression of normal skin (N), primary cutaneous melanoma (PM) and metastatic cutaneous melanoma (MM) in the Gene Expression Omnibus (GEO) database. Then we identified the key genes and molecular pathways that may be involved in the development and metastasis of cutaneous melanoma, thus to discover potential markers or therapeutic targets. Methods Three gene expression profiles (GSE7553, GSE15605 and GSE46517) were downloaded from the GEO database, which contained 225 tissue samples. R software identified the differentially expressed genes (DEGs) between pairs of N, PM and MM samples in the three sets of data. Subsequently, we analyzed the gene ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway of the DEGs, and constructed a protein-protein interaction (PPI) network. MCODE was used to seek the most important modules in PPI network, and then the GO function and KEGG pathway of them were analyzed. Finally, the hub genes were calculated by the cytoHubba in Cytoscape software. The Cancer Genome Atlas (TCGA) data were analyzed using UALCAN and GEPIA to validate the hub genes and analyze the prognosis of patients. Results A total of 134, 317 and 147 DEGs were identified between N, PM and MM in pair. GO functions and KEGG pathways analysis results showed that the upregulated DEGs mainly concentrated in cell division, spindle microtubule, protein kinase activity and the pathway of transcriptional misregulation in cancer. The downregulated DEGs occurred in epidermis development, extracellular exosome, structural molecule activity, metabolic pathways and p53 signaling pathway. The PPI network obtained the most important module, whose GO function and KEGG pathway were enriched in oxidoreductase activity, cell division, cell exosomes, protein binding, structural molecule activity, and metabolic pathways. 14, 18 and 18 DEGs were identified respectively as the hub genes between N, PM and MM, and TCGA data confirmed the expression differences of hub genes. In addition, the overall survival curve of hub genes showed that the differences in these genes may lead to a significant decrease in overall survival of melanoma patients. Conclusions In this study, several hub genes were found from normal skin, primary melanoma and metastatic melanoma samples. These hub genes may play an important role in the production, invasion, recurrence or death of CM, and may provide new ideas and potential targets for its diagnosis or treatment.


2021 ◽  
Author(s):  
Fucai Tang ◽  
Xiayan Qian ◽  
Zeguang Lu ◽  
Yongchang Lai ◽  
Zhibiao Li ◽  
...  

Abstract Background Bladder cancer (BC) is one of the most common malignant cancer of urinary system in the worldwide. The purpose of the present study was to analysis differentially expressed genes (DEGs), biological pathways and prognostic significance BC by bioinformatics analysis. Methods The gene expression dataset GSE7476 and the mRNA Seq sequencing data were downloaded respectively from GEO and TCGA. A total of 220 DEGs were obtained in BC. GO analysis and KEGG pathway analysis were performed for up- and down-regulated DEGs. Then, a protein-protein interaction (PPI) networks and module were constructed by Cytoscape software. Survival analysis of hub genes was performed. Results The result of GO analysis revealed that the up-regulated DEGs were enriched mainly in sister chromatid segregation, while the down-regulated DEGs were enriched mainly in muscle contraction. The result of KEGG pathway analysis showed that up-regulated DEGs were enriched mainly in cell cycle, while down-regulated DEGs enriched in IL-17 signaling pathway. 41 hub gene and 3 crucial modules were identified in the PPI network. 15 genes significantly associated with patient prognosis in BC were obtained by Kaplan-Meier analysis. Conclusions In summary, the present study identified hub genes, crucial pathways and provide possible the molecular targets and prognostic biomarkers for targeted therapy and prognostic assessment of BC.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 665
Author(s):  
Hui Yu ◽  
Yan Guo ◽  
Jingchun Chen ◽  
Xiangning Chen ◽  
Peilin Jia ◽  
...  

Transcriptomic studies of mental disorders using the human brain tissues have been limited, and gene expression signatures in schizophrenia (SCZ) remain elusive. In this study, we applied three differential co-expression methods to analyze five transcriptomic datasets (three RNA-Seq and two microarray datasets) derived from SCZ and matched normal postmortem brain samples. We aimed to uncover biological pathways where internal correlation structure was rewired or inter-coordination was disrupted in SCZ. In total, we identified 60 rewired pathways, many of which were related to neurotransmitter, synapse, immune, and cell adhesion. We found the hub genes, which were on the center of rewired pathways, were highly mutually consistent among the five datasets. The combinatory list of 92 hub genes was generally multi-functional, suggesting their complex and dynamic roles in SCZ pathophysiology. In our constructed pathway crosstalk network, we found “Clostridium neurotoxicity” and “signaling events mediated by focal adhesion kinase” had the highest interactions. We further identified disconnected gene links underlying the disrupted pathway crosstalk. Among them, four gene pairs (PAK1:SYT1, PAK1:RFC5, DCTN1:STX1A, and GRIA1:MAP2K4) were normally correlated in universal contexts. In summary, we systematically identified rewired pathways, disrupted pathway crosstalk circuits, and critical genes and gene links in schizophrenia transcriptomes.


Author(s):  
Xitong Yang ◽  
Pengyu Wang ◽  
Shanquan Yan ◽  
Guangming Wang

AbstractStroke is a sudden cerebrovascular circulatory disorder with high morbidity, disability, mortality, and recurrence rate, but its pathogenesis and key genes are still unclear. In this study, bioinformatics was used to deeply analyze the pathogenesis of stroke and related key genes, so as to study the potential pathogenesis of stroke and provide guidance for clinical treatment. Gene Expression profiles of GSE58294 and GSE16561 were obtained from Gene Expression Omnibus (GEO), the differentially expressed genes (DEGs) were identified between IS and normal control group. The different expression genes (DEGs) between IS and normal control group were screened with the GEO2R online tool. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the DEGs were performed. Using the Database for Annotation, Visualization and Integrated Discovery (DAVID) and gene set enrichment analysis (GSEA), the function and pathway enrichment analysis of DEGS were performed. Then, a protein–protein interaction (PPI) network was constructed via the Search Tool for the Retrieval of Interacting Genes (STRING) database. Cytoscape with CytoHubba were used to identify the hub genes. Finally, NetworkAnalyst was used to construct the targeted microRNAs (miRNAs) of the hub genes. A total of 85 DEGs were screened out in this study, including 65 upward genes and 20 downward genes. In addition, 3 KEGG pathways, cytokine − cytokine receptor interaction, hematopoietic cell lineage, B cell receptor signaling pathway, were significantly enriched using a database for labeling, visualization, and synthetic discovery. In combination with the results of the PPI network and CytoHubba, 10 hub genes including CEACAM8, CD19, MMP9, ARG1, CKAP4, CCR7, MGAM, CD79A, CD79B, and CLEC4D were selected. Combined with DEG-miRNAs visualization, 5 miRNAs, including hsa-mir-146a-5p, hsa-mir-7-5p, hsa-mir-335-5p, and hsa-mir-27a- 3p, were predicted as possibly the key miRNAs. Our findings will contribute to identification of potential biomarkers and novel strategies for the treatment of ischemic stroke, and provide a new strategy for clinical therapy.


Sign in / Sign up

Export Citation Format

Share Document