scholarly journals Analysis of virulence factors and antibiotic resistance genes in Group B Streptococcus from clinical samples

2020 ◽  
Author(s):  
Raymond Mudzana ◽  
Rooyen T Mavenyengwa ◽  
Muchaneta Gudza-Mugabe

Abstract Background: Streptococcus agalacticae (Group B Streptococcus, GBS) is one of the most important causative agents of serious infections among neonates. This study was carried out to identify antibiotic resistance and virulence genes associated with GBS isolated from pregnant women.Methods: A total of 43 GBS isolates were obtained from 420 vaginal samples collected from HIV positive and negative women who were 13-35 weeks pregnant attending Antenatal Care at Chitungwiza and Harare Central Hospitals in Zimbabwe. Identification tests of GBS isolates was done using standard bacteriological methods and molecular identification testing. Antibiotic susceptibility testing was done using the modified Kirby-Bauer method and E-test strips. The boiling method was used to extract DNA and Polymerase Chain Reaction (PCR) was used to screen for 13 genes. Data was fed into SPSS 24.0.Results: Nine distinct virulence gene profiles were identified and hly-scpB-bca-rib 37.2% (16/43) was common. The virulence genes identified were namely hly 97.8% (42/43), scpB 90.1% (39/43), bca 86.0% (37/43), rib 69.8% (30/43) and bac 11.6% (5/43). High resistance to tetracycline 97.7% (42/43) was reported followed by 72.1% (31/43) cefazolin, 69.8% (30/43) penicillin G, 58.1% (25/43) ampicillin, 55.8% (24/43) clindamycin, 46.5% (20/43) ceftriaxone, 34.9% (15/43) chloramphenicol, and 30.2% (13/43) for both erythromycin and vancomycin using disk diffusion. Antibiotic resistance genes among the resistant and intermediate-resistant isolates showed high frequencies for tetM 97.6% (41/42) and low frequencies for ermB 34.5% (10/29), ermTR 10.3% (3/29), mefA 3.4% (1/29), tetO 2.4% (1/42) and linB 0% (0/35). The atr housekeeping gene yielded 100% (43/43) positive results, whilst the mobile genetic element IS1548 yielded 9.3% (4/43).Conclusion: The study showed high prevalence of hly, scpB, bca and rib virulence genes in S. agalactiae strains isolated from pregnant women. Tetracycline resistance was predominantly caused by the tetM gene, whilst macrolide resistance was predominantly due to the presence of erm methylase, with the ermB gene being more prevalent. Multi-drug resistance coupled with the recovery of resistant isolates to antimicrobial agents such as penicillins indicates the importance of GBS surveillance and susceptibility tests. It was also observed that in vitro phenotypic resistance is not always accurately predicted by resistance genotypes.

2020 ◽  
Author(s):  
Raymond Mudzana ◽  
Rooyen T Mavenyengwa ◽  
Muchaneta Gudza-Mugabe

Abstract Background: Streptococcus agalacticae (Group B Streptococcus, GBS) is one of the most important causative agents of serious infections among neonates. This study was carried out to identify antibiotic resistance and virulence genes associated with GBS isolated from pregnant women.Methods: A total of 43 GBS isolates were obtained from 420 vaginal samples collected from HIV positive and negative women who were 13-35 weeks pregnant attending Antenatal Care at Chitungwiza and Harare Central Hospitals in Zimbabwe. Identification tests of GBS isolates was done using standard bacteriological methods and molecular identification testing. Antibiotic susceptibility testing was done using the modified Kirby-Bauer method and E-test strips. The boiling method was used to extract DNA and Polymerase Chain Reaction (PCR) was used to screen for 13 genes. Data was fed into SPSS 24.0.Results: Nine distinct virulence gene profiles were identified and hly-scpB-bca-rib 37.2% (16/43) was common. The virulence genes identified were namely hly 97.8% (42/43), scpB 90.1% (39/43), bca 86.0% (37/43), rib 69.8% (30/43) and bac 11.6% (5/43). High resistance to tetracycline 97.7% (42/43) was reported followed by 72.1% (31/43) cefazolin, 69.8% (30/43) penicillin G, 58.1% (25/43) ampicillin, 55.8% (24/43) clindamycin, 46.5% (20/43) ceftriaxone, 34.9% (15/43) chloramphenicol, and 30.2% (13/43) for both erythromycin and vancomycin using disk diffusion. Antibiotic resistance genes among the resistant and intermediate-resistant isolates showed high frequencies for tetM 97.6% (41/42) and low frequencies for ermB 34.5% (10/29), ermTR 10.3% (3/29), mefA 3.4% (1/29), tetO 2.4% (1/42) and linB 0% (0/35). The atr housekeeping gene yielded 100% (43/43) positive results, whilst the mobile genetic element IS1548 yielded 9.3% (4/43).Conclusion: The study showed high prevalence of hly, scpB, bca and rib virulence genes in S. agalactiae strains isolated from pregnant women. Tetracycline resistance was predominantly caused by the tetM gene, whilst macrolide resistance was predominantly due to the presence of erm methylase, with the ermB gene being more prevalent. Multi-drug resistance coupled with the recovery of resistant isolates to antimicrobial agents such as penicillins indicates the importance of GBS surveillance and susceptibility tests. It was also observed that in vitro phenotypic resistance is not always accurately predicted by resistance genotypes.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Raymond Mudzana ◽  
Rooyen T. Mavenyengwa ◽  
Muchaneta Gudza-Mugabe

Abstract Background Streptococcus agalacticae (Group B Streptococcus, GBS) is one of the most important causative agents of serious infections among neonates. This study was carried out to identify antibiotic resistance and virulence genes associated with GBS isolated from pregnant women. Methods A total of 43 GBS isolates were obtained from 420 vaginal samples collected from HIV positive and negative women who were 13–35 weeks pregnant attending Antenatal Care at Chitungwiza and Harare Central Hospitals in Zimbabwe. Identification tests of GBS isolates was done using standard bacteriological methods and molecular identification testing. Antibiotic susceptibility testing was done using the modified Kirby-Bauer method and E-test strips. The boiling method was used to extract DNA and Polymerase Chain Reaction (PCR) was used to screen for 13 genes. Data was fed into SPSS 24.0. Results Nine distinct virulence gene profiles were identified and hly-scpB-bca-rib 37.2% (16/43) was common. The virulence genes identified were namely hly 97.8% (42/43), scpB 90.1% (39/43), bca 86.0% (37/43), rib 69.8% (30/43) and bac 11.6% (5/43). High resistance to tetracycline 97.7% (42/43) was reported followed by 72.1% (31/43) cefazolin, 69.8% (30/43) penicillin G, 58.1% (25/43) ampicillin, 55.8% (24/43) clindamycin, 46.5% (20/43) ceftriaxone, 34.9% (15/43) chloramphenicol, and 30.2% (13/43) for both erythromycin and vancomycin using disk diffusion. Antibiotic resistance genes among the resistant and intermediate-resistant isolates showed high frequencies for tetM 97.6% (41/42) and low frequencies for ermB 34.5% (10/29), ermTR 10.3% (3/29), mefA 3.4% (1/29), tetO 2.4% (1/42) and linB 0% (0/35). The atr housekeeping gene yielded 100% (43/43) positive results, whilst the mobile genetic element IS1548 yielded 9.3% (4/43). Conclusion The study showed high prevalence of hly, scpB, bca and rib virulence genes in S. agalactiae strains isolated from pregnant women. Tetracycline resistance was predominantly caused by the tetM gene, whilst macrolide resistance was predominantly due to the presence of erm methylase, with the ermB gene being more prevalent. Multi-drug resistance coupled with the recovery of resistant isolates to antimicrobial agents such as penicillins indicates the importance of GBS surveillance and susceptibility tests. It was also observed that in vitro phenotypic resistance is not always accurately predicted by resistance genotypes.


2020 ◽  
Author(s):  
Raymond Mudzana ◽  
Rooyen T Mavenyengwa ◽  
Muchaneta Gudza-Mugabe

Abstract Background: Streptococcus agalacticae (Group B Streptococcus, GBS) is one of the most important causative agents of serious infections among neonates. This study was carried out to identify antibiotic resistance and virulence genes associated with GBS isolated from pregnant women.Methods: A total of 43 GBS isolates were obtained from 420 vaginal samples collected from HIV positive and negative women who were 13-35 weeks pregnant attending Antenatal Care at Chitungwiza and Harare Central Hospitals in Zimbabwe. Identification tests of GBS isolates was done using standard bacteriological methods and molecular identification testing. Antibiotic susceptibility testing was done using the modified Kirby-Bauer method and E-test strips. The boiling method was used to extract DNA and Polymerase Chain Reaction (PCR) was used to screen for 13 genes. Data was fed into SPSS 24.0.Results: Nine distinct virulence gene profiles were identified and hly-scpB-bca-rib 37.2% (16/43) was common. The virulence genes identified were namely hly 97.8% (42/43), scpB 90.1% (39/43), bca 86.0% (37/43), rib 69.8% (30/43) and bac 11.6% (5/43). High resistance to tetracycline 97.7% (42/43) was reported followed by 72.1% (31/43) cefazolin, 69.8% (30/43) penicillin G, 58.1% (25/43) ampicillin, 55.8% (24/43) clindamycin, 46.5% (20/43) ceftriaxone, 34.9% (15/43) chloramphenicol, and 30.2% (13/43) for both erythromycin and vancomycin using disk diffusion. Antibiotic resistance genes among the resistant and intermediate-resistant isolates showed high frequencies for tetM 97.6% (41/42) and low frequencies for ermB 34.5% (10/29), ermTR 10.3% (3/29), mefA 3.4% (1/29), tetO 2.4% (1/42) and linB 0% (0/35). The atr housekeeping gene yielded 100% (43/43) positive results, whilst the mobile genetic element IS1548 yielded 9.3% (4/43).Conclusion: The study showed high prevalence of hly, scpB, bca and rib virulence genes in S. agalactiae strains isolated from pregnant women. Tetracycline resistance was predominantly caused by the tetM gene, whilst macrolide resistance was predominantly due to the presence of erm methylase, with the ermB gene being more prevalent. Multi-drug resistance coupled with the recovery of resistant isolates to antimicrobial agents such as penicillins indicates the importance of GBS surveillance and susceptibility tests. It was also observed that in vitro phenotypic resistance is not always accurately predicted by resistance genotypes.


2021 ◽  
Author(s):  
Raymond Mudzana ◽  
Rooyen T Mavenyengwa ◽  
Muchaneta Gudza-Mugabe

Abstract Background: Streptococcus agalacticae (Group B Streptococcus, GBS) is one of the most important causative agents of serious infections among neonates. This study was carried out to identify antibiotic resistance and virulence genes associated with GBS isolated from pregnant women.Methods: A total of 43 GBS isolates were obtained from 420 vaginal samples collected from HIV positive and negative women who were 13-35 weeks pregnant attending Antenatal Care at Chitungwiza and Harare Central Hospitals in Zimbabwe. Identification tests of GBS isolates was done using standard bacteriological methods and molecular identification testing. Antibiotic susceptibility testing was done using the modified Kirby-Bauer method and E-test strips. The boiling method was used to extract DNA and Polymerase Chain Reaction (PCR) was used to screen for 13 genes. Data was fed into SPSS 24.0.Results: Nine distinct virulence gene profiles were identified and hly-scpB-bca-rib 37.2% (16/43) was common. The virulence genes identified were namely hly 97.8% (42/43), scpB 90.1% (39/43), bca 86.0% (37/43), rib 69.8% (30/43) and bac 11.6% (5/43). High resistance to tetracycline 97.7% (42/43) was reported followed by 72.1% (31/43) cefazolin, 69.8% (30/43) penicillin G, 58.1% (25/43) ampicillin, 55.8% (24/43) clindamycin, 46.5% (20/43) ceftriaxone, 34.9% (15/43) chloramphenicol, and 30.2% (13/43) for both erythromycin and vancomycin using disk diffusion. Antibiotic resistance genes among the resistant and intermediate-resistant isolates showed high frequencies for tetM 97.6% (41/42) and low frequencies for ermB 34.5% (10/29), ermTR 10.3% (3/29), mefA 3.4% (1/29), tetO 2.4% (1/42) and linB 0% (0/35). The atr housekeeping gene yielded 100% (43/43) positive results, whilst the mobile genetic element IS1548 yielded 9.3% (4/43).Conclusion: The study showed high prevalence of hly, scpB, bca and rib virulence genes in S. agalactiae strains isolated from pregnant women. Tetracycline resistance was predominantly caused by the tetM gene, whilst macrolide resistance was predominantly due to the presence of erm methylase, with the ermB gene being more prevalent. Multi-drug resistance coupled with the recovery of resistant isolates to antimicrobial agents such as penicillins indicates the importance of GBS surveillance and susceptibility tests. It was also observed that in vitro phenotypic resistance is not always accurately predicted by resistance genotypes.


2020 ◽  
Author(s):  
Raymond Mudzana ◽  
Rooyen T Mavenyengwa ◽  
Muchaneta Gudza-Mugabe

Abstract Background: Streptococcus agalacticae (Group B Streptococcus, GBS) is one of the most important causative agents of serious infections among neonates. This study was carried out to identify antibiotic resistance and virulence genes associated with GBS isolated from pregnant women. Methods: A total of 43 GBS isolates were obtained from 420 vaginal samples collected from HIV positive and negative women who were 13-35 weeks pregnant attending Antenatal Care at Chitungwiza and Harare Central Hospitals in Zimbabwe. Identification tests of GBS isolates was done using standard bacteriological methods and molecular identification testing. Antibiotic susceptibility testing was done using the modified Kirby-Bauer method. The boiling method was used to extract DNA and Polymerase Chain Reaction (PCR) was used to screen for 13 genes. Data was fed into SPSS 24.0 and the Spearman rank correlation test used to determine correlation among genes. Results: Nine distinct virulence gene profiles were identified. The profiles hly-scpB-bca-rib 37.2% (16/43) and hly-scpB-bca 18.6% (8/43) were common. The virulence genes identified were namely hly 97.8% (42/43), scpB 90.1% (39/43), bca 86.0% (37/43), rib 69.8% (30/43) and bac 11.6% (5/43). High resistance to tetracycline 97.7% (42/43) was reported followed by penicillin G, 69.8% (30/43), ampicillin 58.1% (25/43), clindamycin 55.8% (24/43) and erythromycin 30.2% (13/43). Antibiotic resistance genes among the resistant and intermediate-resistant isolates showed high frequencies for tetM 97.6% (41/42) and low frequencies for ermB 34.5% (10/29), ermTR 10.3% (3/29), mefA 3.4% (1/29), tetO 2.4% (1/42) and linB 0% (0/35). The atr housekeeping gene yielded 100% (43/43) positive results, whilst the mobile genetic element IS1548 yielded 9.3% (4/43). Conclusion: The study showed a high prevalence of hly, scpB, bca and rib virulence genes in S. agalactiae strains isolated from pregnant women. Tetracycline resistance was found to be predominantly caused by the tetM gene, whilst macrolide resistance was predominantly due to the presence of erm methylase, with the ermB gene being more prevalent. The recovery of resistant isolates to antimicrobial agents such as penicillins indicates the importance of GBS surveillance and susceptibility tests. It was also observed that in vitro phenotypic resistance is not always accurately predicted by resistance genotypes.


2020 ◽  
Author(s):  
Raymond Mudzana ◽  
Rooyen T Mavenyengwa ◽  
Muchaneta Gudza-Mugabe

Abstract Background: Streptococcus agalacticae is one of the most important causative agents of serious infections among neonates. Group B Streptococcus (GBS) virulence factors are important in the development of vaccines, whilst antibiotic resistance genes are necessary in understanding the resistance mechanisms used by these pathogens. This study was carried out to identify the virulence genes and antibiotic resistance genes associated with GBS isolated from pregnant women.Methods: A total of 43 GBS isolates were obtained from vaginal samples that were collected from all HIV positive and HIV negative women who were 13-35 weeks pregnant attending Antenatal Care at both Chitungwiza and Harare Central Hospitals in Zimbabwe. Identification tests of GBS isolates was done using standard bacteriological methods including molecular tests. Antibiotic susceptibility testing using 3 antibiotics was done using the modified Kirby-Bauer method. The boiling method was used to extract DNA and Polymerase Chain Reaction (PCR) was used to screen for 13 genes in the isolates. Data was fed into SPSS 24.0 and the Spearman rank correlation test used to determine any correlation among genes.Results: Nine distinct virulence gene profiles were identified. The profiles hly-scpB-bca-rib 37.2% (16/43) and hly-scpB-bca 18.6% (8/43) were common among GBS isolates. The following virulence gene frequencies were obtained namely hly 97.8% (42/43), scpB 90.1% (39/43), bca 86.0% (37/43), rib 69.8% (30/43) and bac 11.6% (5/43). Antibiotic resistance genes showed high frequencies for tetM 97.6% (41/42) and low frequencies for ermB 34.5% (10/29), ermTR 10.3% (3/29), mefA 3.4% (1/29), tetO 2.4% (1/42) and linB 0% (0/35). The atr housekeeping gene amplification yielded 100% (43/43) positive results, whilst the mobile genetic element IS1548 yielded a low 9.3% (4/43).Conclusion: The study showed a high prevalence of multiple virulence genes hly, scpB, bca and rib in S. agalactiae strains isolated from pregnant women. Tetracycline resistance was found to be predominantly caused by the tetM gene, whilst macrolide resistance was predominantly due to the presence of erm methylase, with the ermB gene being more prevalent. It was also observed that in vitro phenotypic resistance is not always accurately predicted by resistance genotypes.


2020 ◽  
Author(s):  
Raymond Mudzana ◽  
Rooyen T Mavenyengwa ◽  
Muchaneta Gudza-Mugabe

Abstract Background : Streptococcus agalacticae (Group B Streptococcus, GBS) is one of the most important causative agents of serious infections among neonates. GBS virulence factors are important in vaccine development, whilst antibiotic resistance genes are necessary in understanding the resistance mechanisms used by pathogens. This study was carried out to identify virulence genes and antibiotic resistance genes associated with GBS isolated from pregnant women. Methods: A total of 43 GBS isolates were obtained from 420 vaginal samples collected from HIV positive and negative women who were 13-35 weeks pregnant attending Antenatal Care at Chitungwiza and Harare Central Hospitals in Zimbabwe. Identification tests of GBS isolates was done using standard bacteriological methods including molecular tests. Antibiotic susceptibility testing using 3 antibiotics was done using the modified Kirby-Bauer method. The boiling method was used to extract DNA and Polymerase Chain Reaction (PCR) was used to screen for 13 genes. Data was fed into SPSS 24.0 and the Spearman rank correlation test used to determine correlation among genes. Results: Nine distinct virulence gene profiles were identified. The profiles hly-scpB-bca-rib 37.2% (16/43) and hly-scpB-bca 18.6% (8/43) were common. The following virulence gene frequencies were obtained namely hly 97.8% (42/43), scpB 90.1% (39/43), bca 86.0% (37/43), rib 69.8% (30/43) and bac 11.6% (5/43). High resistance to tetracycline 97.7% (42/43) was reported followed by clindamycin 55.8% (24/43) and erythromycin 30.2% (13/43). Antibiotic resistance genes among the resistant and intermediate-resistant isolates showed high frequencies for tetM 97.6% (41/42) and low frequencies for ermB 34.5% (10/29), ermTR 10.3% (3/29), mefA 3.4% (1/29), tetO 2.4% (1/42) and linB 0% (0/35). The atr housekeeping gene yielded 100% (43/43) positive results, whilst the mobile genetic element IS1548 yielded 9.3% (4/43). Conclusion: The study showed high prevalence of multiple virulence genes hly, scpB, bca and rib in S. agalactiae strains isolated from pregnant women. Tetracycline resistance was found to be predominantly caused by the tetM gene, whilst macrolide resistance was predominantly due to the presence of erm methylase, with the ermB gene being more prevalent. It was also observed that in vitro phenotypic resistance is not always accurately predicted by resistance genotypes.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Abdelazeem M. Algammal ◽  
Mahmoud Mabrok ◽  
Elayaraja Sivaramasamy ◽  
Fatma M. Youssef ◽  
Mona H. Atwa ◽  
...  

Abstract This study aimed to investigate the prevalence, antibiogram of Pseudomonasaeruginosa (P.aeruginosa), and the distribution of virulence genes (oprL,exoS, phzM, and toxA) and the antibiotic-resistance genes (blaTEM, tetA, and blaCTX-M). A total of 285 fish (165 Oreochromisniloticus and 120 Clariasgariepinus) were collected randomly from private fish farms in Ismailia Governorate, Egypt. The collected specimens were examined bacteriologically. P. aeruginosa was isolated from 90 examined fish (31.57%), and the liver was the most prominent infected organ. The antibiogram of the isolated strains was determined using a disc diffusion method, where the tested strains exhibited multi-drug resistance (MDR) to amoxicillin, cefotaxime, tetracycline, and gentamicin. The PCR results revealed that all the examined strains harbored (oprL and toxA) virulence genes, while only 22.2% were positive for the phzM gene. On the contrary, none of the tested strains were positive for the exoS gene. Concerning the distribution of the antibiotic resistance genes, the examined strains harbored blaTEM, blaCTX-M, and tetA genes with a total prevalence of 83.3%, 77.7%, and 75.6%, respectively. Experimentally infected fish with P.aeruginosa displayed high mortalities in direct proportion to the encoded virulence genes and showed similar signs of septicemia found in the naturally infected one. In conclusion, P.aeruginosa is a major pathogen of O.niloticus and C.gariepinus.oprL and toxA genes are the most predominant virulence genes associated with P.aeruginosa infection. The blaCTX-M,blaTEM, and tetA genes are the main antibiotic-resistance genes that induce resistance patterns to cefotaxime, amoxicillin, and tetracycline, highlighting MDR P.aeruginosa strains of potential public health concern.


Author(s):  
O. C. Adekunle ◽  
A. J. Falade- Fatila ◽  
R. Ojedele ◽  
G. Odewale

The emerging drug resistance, especially among the Escherichia coli (E.coli) isolates from pregnant women, spread rapidly within the community. Urinary tract infection (UTI) is a well-known bacterial infection posing serious health problem in pregnant women. Also, multi-drug resistance is becoming rampant, and it is of serious public health concern. Treatment of E. coli is now a challenge due to continuous increase in resistance towards commonly prescribed antibiotics, thus posing a threat to treatment. Hence, the aim of the study is to determine antibiotic resistance genes in some multiple antibiotic resistant E.coli from apparently healthy pregnant women in Osun State. A cross-sectional study design was used to collect 150 mid-stream urine samples from apparently healthy pregnant women from March, 2018 to September, 2018. A well structured questionnaire and informed consent were used for data collection. Standard loop technique was used to place 0.001 ml of urine on Cysteine Lactose Electrolyte Deficient (CLED) medium, Blood agar, MacConkey agar and incubated at 37 °C for 24 h. A standard agar disc diffusion method was used to determine antimicrobial susceptibility pattern of the isolates. The molecular detection of the resistant genes was done using PCR techniques. The ages of women enrolled in this study ranges from 22 to 42 years (mean ± standard deviation = 31 ± 4.7 years). Escherichia coli showed high percentage of resistance to ampicillin and low resistance to ciprofloxacin and penicillin. All the E. coli isolates were sensitive to levofloxacin, and most were resistant to Meropenem. Multiple drug resistance was observed in all the isolates. Resistance genes in VIM 390bp, bla ctx-M 585bp and TEM 517bp were detected in some of the representative E. coli isolates profiled. This study identified the presence of Multi-drug resistance genes in E. coli associated UTI among pregnant women in Osogbo.


Author(s):  
Mahdieh Nabavinia ◽  
Mohammad Bagher Khalili ◽  
Maryam Sadeh ◽  
Gilda Eslami ◽  
Mahmood Vakili ◽  
...  

Background and Objectives: Due to the important role of Streptococcus agalactiae, Group B streptococci (GBS), in production of invasive disease in neonates, investigation regarding the pathogenicity and antibiotic resistance factors is necessary in selecting the appropriate therapeutic agents. Beside capsule, the pilus has been currently recognized as an important factor in enhancing the pathogenicity of GBS. Resistance of GBS to selected antibiotics is noticeably increasing which is mainly due to the anomalous use of these drugs for treatment. The aim of this study was to determine the prevalence of pili genes followed by antibiotic susceptibility of GBS, previously serotyped, isolated from pregnant women in the city of Yazd, Iran. Materials and Methods: Fifty seven GBS from pregnant women were subjected to multiplex PCR for determination of PI-1, PI-2a and PI-2b pilus-islands and simultaneously, the phenotype of antibiotic resistance to penicillin, tetracycline, erythromycin, clindamycin, gentamycin and levofloxacin was determined. Antibiotic resistance genes (ermA, ermB, mefA, tetM, int-Tn) were further diagnosed using PCR and multiplex PCR. Results: PI-1+PI-2a with 71.9%; followed by PI-2a (21.1%) and PI-2b (7%) were observed. PI-1+PI-2a in serotype III was (73.2%), serotype II, Ia, Ib and V were 12.2%, 9.8%, 2.4% and 2.4% respectively. GBS penicillin sensitive was 89.5% and 96.5% resistance to tetracycline. The frequency of resistance genes were as follows: tetM (93%), ermA (33.3%), ermB (8.8%), int-Tn (80.7%) and mefA (0). Conclusion: Majority of GBS contained PI-1+PI-2a. Hence presence of this pilus stabilizes the colonization, therefore designing a program for diagnosing and treatment of infected pregnant women seems to be necessary.


Sign in / Sign up

Export Citation Format

Share Document