Extensively Drug Resistant Acinetobacter baumannii ST369 Infection in Emergency Intensive Care Unit in Shandong Province, China

2020 ◽  
Author(s):  
Meijie Jiang ◽  
Lin Li ◽  
Shuang Liu ◽  
Zhijun Zhang ◽  
Ning Li ◽  
...  

Abstract Background: Acinetobacter baumannii is a significant nosocomial infectious pathogen worldwide. The aim of this study is to characterize the molecular epidemiology of Acinetobacter baumannii isolated from the clinical infection, providing the epidemiology data for prevention and control. Four patients hospitalized in EICU on January 31st, 2014, and then Acinetobacter baumannii infection was observed. Antimicrobial resistance and resistance genes were analyzed by antimicrobial susceptibility testing and PCR sequencing. Pulse field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were used to analyze these strains’ clonal relatedness. Results: Sixteen strains were recovered, of which 4 strains were isolated from 4 patients, and others were from environment in EICU, such as air, phone and ventilator. All strains belonged to clonal pulsotype A and ST369. Sixteen antibiotics were used to perform the susceptibility testing, and all strains were extensively drug resistant (XDR) Acinetobacter baumannii, they were only susceptible to tigecycline and polymyxin B, but resistant to others, including carbapenems and aminoglycoside antibiotics. Furthermore, all strains carried blaOXA-23-like carbapenemases gene with ISAba1 insertion sequence in the upstream, aminoglycoside resistance genes ant(3″)-I, 16S rRNA methylase gene armA and disinfectant resistant gene qacE△1, which were mainly responsible for the spread of antimicrobial resistance. Fortunately, enhanced control measures were immediately implemented after this infection, and new strains were no longer detected for consecutive three months. Conclusions: molecular epidemiology of blaOXA-23-like carbapenemase-producing Acinetobacter baumannii ST369 in EICU of a hospital was characterized. Routine monitoring should be strengthen to prevent outbreaks of this disease.

2021 ◽  
Vol 12 ◽  
Author(s):  
Mai M. Zafer ◽  
Amira F. A. Hussein ◽  
Mohamed H. Al-Agamy ◽  
Hesham H. Radwan ◽  
Samira M. Hamed

Acinetobacter baumannii has become a major challenge to clinicians worldwide due to its high epidemic potential and acquisition of antimicrobial resistance. This work aimed at investigating antimicrobial resistance determinants and their context in four extensively drug-resistant (XDR) NDM-producing A. baumannii clinical isolates collected between July and October 2020 from Kasr Al-Ainy Hospital, Cairo, Egypt. A total of 20 A. baumannii were collected and screened for acquired carbapenemases (blaNDM, blaVIM and blaIMP) using PCR. Four NDM producer A. baumannii isolates were identified and selected for whole-genome sequencing, in silico multilocus sequence typing, and resistome analysis. Antimicrobial susceptibility profiles were determined using disk diffusion and broth microdilution tests. All blaNDM-positive A. baumannii isolates were XDR. Three isolates belonged to high-risk international clones (IC), namely, IC2 corresponding to ST570Pas/1701Oxf (M20) and IC9 corresponding to ST85Pas/ST1089Oxf (M02 and M11). For the first time, we report blaNDM-1 gene on the chromosome of an A. baumannii strain that belongs to sequence type ST164Pas/ST1418Oxf. Together with AphA6, blaNDM-1 was bracketed by two copies of ISAba14 in ST85Pas isolates possibly facilitating co-transfer of amikacin and carbapenem resistance. A novel blaADC allele (blaADC-257) with an upstream ISAba1 element was identified in M19 (ST/CC164Pas and ST1418Oxf/CC234Oxf). blaADC genes harbored by M02 and M11 were uniquely interrupted by IS1008. Tn2006-associated blaOXA-23 was carried by M20. blaOXA-94 genes were preceded by ISAba1 element in M02 and M11. AbGRI3 was carried by M20 hosting the resistance genes aph(3`)-Ia, aac(6`)-Ib`, catB8, ant(3``)-Ia, sul1, armA, msr(E), and mph(E). Nonsynonymous mutations were identified in the quinolone resistance determining regions (gyrA and parC) of all isolates. Resistance to colistin in M19 was accompanied by missense mutations in lpxACD and pmrABC genes. The current study provided an insight into the genomic background of XDR phenotype in A. baumannii recovered from patients in Egypt. WGS revealed strong association between resistance genes and diverse mobile genetic elements with novel insertion sites and genetic organizations.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Mehdi Kashefieh ◽  
Hassan Hosainzadegan ◽  
Shabnam Baghbanijavid ◽  
Reza Ghotaslou

Introduction. Klebsiella pneumoniae (K. pneumoniae) is one of the leading causes of hospital-acquired and community-acquired infections in the world. This study was conducted to investigate the molecular epidemiology of drug resistance in clinical isolates of K. pneumoniae in Azerbaijan, Iran. Materials and Methods. A total of 100 nonduplicated isolates were obtained from the different wards of Azerbaijan state hospitals, Iran, from 2019 to 2020. Antibiotic susceptibility testing was done. The DNA was extracted, and the PCR for evaluation of the resistance genes was carried out. Results. The highest antibiotic resistance was shown to ampicillin (96%), and the highest susceptibility was shown to tigecycline (9%), and 85% of isolates were multidrug resistant. The most frequent ESBL gene in the tested isolates was blaSHV-1 in 58%, followed by blaCTXM-15 (55%) and blaSHV-11(42%). The qepA, oqxB, and oqxA genes were found to be 95%, 87.5%, and 70%, respectively. We detected tetB in 42%, tetA in 32%, tetD in 21%, and tetC in 16%. Seventy isolates were resistant to co-trimoxazole, and the rate of resistance genes was sul1 in 71%, followed by sul2 (43%), dfr (29%), and sul3 (7%). The most common aminoglycoside resistance genes were ant3Ia, aac6Ib, aph3Ib, and APHs in 44%, 32%, 32%, and 31.4%, respectively. The most frequent resistance gene to fosfomycin was fosA (40%) and fosX (40%) followed by fosC (20%). Conclusion. The results of this study indicate the high frequency of drug resistance among K. pneumoniae isolated from hospitals of Azerbaijan state. The present study shows the presence of high levels of drug-resistant genes in various antibiotics, which are usually used in the treatment of infections due to K. pneumoniae.


Author(s):  
Nabil Karah ◽  
Fizza Khalid ◽  
Sun Nyunt Wai ◽  
Bernt Eric Uhlin ◽  
Irfan Ahmad

Abstract Background Acinetobacter baumannii is a Gram-negative opportunistic pathogen with a notorious reputation of being resistant to antimicrobial agents. The capability of A. baumannii to persist and disseminate between healthcare settings has raised a major concern worldwide. Methods Our study investigated the antibiotic resistance features and molecular epidemiology of 52 clinical isolates of A. baumannii collected in Pakistan between 2013 and 2015. Antimicrobial susceptibility patterns were determined by the agar disc diffusion method. Comparative sequence analyses of the ampC and blaOXA-51-like alleles were used to assign the isolates into clusters. The whole genomes of 25 representative isolates were sequenced using the MiSeq Desktop Sequencer. Free online applications were used to determine the phylogeny of genomic sequences, retrieve the multilocus sequence types (ST), and detect acquired antimicrobial resistance genes. Results Overall, the isolates were grouped into 7 clusters and 3 sporadic isolates. The largest cluster, Ab-Pak-cluster-1 (blaOXA-66 and ISAba1-ampC-19) included 24 isolates, belonged to ST2 and International clone (IC) II, and was distributed between two geographical far-off cities, Lahore and Peshawar. Ab-Pak-clusters-2 (blaOXA-66, ISAba1-ampC-2), and -3 (blaOXA-66, ISAba1-ampC-20) and the individual isolate Ab-Pak-Lah-01 (ISAba1-blaOXA-66, ISAba1-ampC-2) were also assigned to ST2 and IC II. On the other hand, Ab-Pak-clusters-4 (blaOXA-69, ampC-1), -5 (blaOXA-69, ISAba1-ampC-78), and -6A (blaOXA-371, ISAba1-ampC-3) belonged to ST1, while Ab-Pak-cluster-6B (blaOXA-371, ISAba1-ampC-8) belonged to ST1106, with both ST1 and ST1106 being members of IC I. Five isolates belonged to Ab-Pak-cluster-7 (blaOXA-65, ampC-43). This cluster corresponded to ST158, showed a well-delineated position on the genomic phylogenetic tree, and was equipped with several antimicrobial resistance genes including blaOXA-23 and blaGES-11. Conclusions Our study detected the occurrence of 7 clusters of A. baumannii in Pakistan. Altogether, 6/7 of the clusters and 45/52 (86.5%) of the isolates belonged to IC I (n = 9) or II (n = 36), making Pakistan no exception to the global domination of these two clones. The onset of ST158 in Pakistan marked a geographical dispersal of this clone beyond the Middle East and brought up the need for a detailed characterization.


2018 ◽  
Vol 62 (3) ◽  
Author(s):  
Shu-Chen Kuo ◽  
Wei-Cheng Huang ◽  
Tzu-Wen Huang ◽  
Hui-Ying Wang ◽  
Jui-Fen Lai ◽  
...  

ABSTRACT The rate of recovery of carbapenem-resistant Acinetobacter baumannii (CRAB) isolates has increased significantly in recent decades in Taiwan. This study investigated the molecular epidemiology of CRAB with a focus on the mechanisms of resistance and spread in isolates with bla OXA-23-like or bla OXA-24-like . All 555 CRAB isolates in our multicenter collection, which were recovered from 2002 to 2010, were tested for the presence of class A, B, and D carbapenemase genes. All isolates with bla OXA-23-like or bla OXA-24-like were subjected to pulsed-field gel electrophoresis, and 82 isolates (60 isolates with bla OXA-23-like and 22 isolates with bla OXA-24-like ) were selected for multilocus sequence typing to determine the sequence type (ST) and clonal group (CG) and for detection of additional β-lactamase and aminoglycoside resistance genes. The flanking regions of carbapenem and aminoglycoside resistance genes were identified by PCR mapping and sequencing. The localization of bla OXA was determined by S1 nuclease and I-CeuI assays. The numbers of CRAB isolates carrying bla OXA-23-like or bla OXA-24-like , especially those carrying bla OXA-23-like , increased significantly from 2008 onward. The bla OXA-23-like gene was carried by antibiotic resistance genomic island 1 (AbGRI1)-type structures located on plasmids and/or the chromosome in isolates of different STs (CG92 and novel CG786), whereas bla OXA-24-like was carried on plasmids in CRAB isolates of limited STs (CG92). No class A or B carbapenemase genes were identified. Multiple aminoglycoside resistance genes coexisted in CRAB. Tn 6180 -borne armA was found in 74 (90.2%) CRAB isolates, and 58 (70.7%) isolates had Tn 6179 upstream, constituting AbGRI3. bla TEM was present in 38 (46.3%) of the CRAB isolates tested, with 35 (92.1%) isolates containing bla TEM in AbGRI2-type structures, and 61% of ampC genes had IS Aba1 upstream. We conclude that the dissemination and spread of a few dominant lineages of CRAB containing various resistance island structures occurred in Taiwan.


2014 ◽  
Vol 69 (6) ◽  
pp. 1483-1491 ◽  
Author(s):  
Sang-Yeop Lee ◽  
Sung Ho Yun ◽  
Yeol Gyun Lee ◽  
Chi-Won Choi ◽  
Sun-Hee Leem ◽  
...  

2021 ◽  
Vol Volume 14 ◽  
pp. 1931-1939
Author(s):  
Hasan Ejaz ◽  
Mahtab Ahmad ◽  
Sonia Younas ◽  
Kashaf Junaid ◽  
Khalid Omer Abdalla Abosalif ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document