scholarly journals LOXL1 modulates the malignant progression of colorectal cancer by inhibiting the transcriptional activity of YAP

2020 ◽  
Author(s):  
Lin Hu ◽  
Jing Wang ◽  
Yunliang Wang ◽  
Linpeng Wu ◽  
Chao Wu ◽  
...  

Abstract Background LOX-like 1 (LOXL1), as a lysyl oxidase, emerging evidences revealed the effect in cancer malignant progression. However, its role in colorectal cancer (CRC) and the underlying molecular mechanisms have not yet been elucidated. Methods LOXL1 expression in colorectal cancer was detected by immunohistochemistry, western blot and real-time PCR. In vitro , colony formation assay, wound healing assay, migration and invasion experiment were performed to investigate the effects of LOXL1 in cell proliferation, migration and invasion, respectively. In vivo , metastasis models and mouse xenograft were used to determine tumorigenicity and metastasis ability. Molecular biology experiments were utilized to reveal the underlying mechanisms of LOXL1 modulating Hippo pathway. Results LOXL1 is highly expressed in normal colon tissues compared with cancer tissues. In vitro, Silencing LOXL1 in CRC cell lines dramatically enhanced migration, invasion, and colony formation, while overexpression of LOXL1 manifested the opposite effects. Results of the in vivo experiments demonstrated that the enforced expression of LOXL1 in CRC cell lines had drastically inhibited the progression of metastasis and tumour growth. Mechanistically, LOXL1 inhibited the transcriptional activity of Yes-associated protein (YAP) was through interaction with MST1/2 and increasing the phosphorylation of MST1/2. Conclusions LOXL1 may function as an important tumour suppressor in regulating tumour growth, invasion and metastasis via negative regulating of YAP activity.

2020 ◽  
Author(s):  
Lin Hu ◽  
Jing Wang ◽  
Yunliang Wang ◽  
Linpeng Wu ◽  
Chao Wu ◽  
...  

Abstract Background: LOX-like 1 (LOXL1) is a lysyl oxidase, and emerging evidence has revealed its effect on malignant cancer progression. However, its role in colorectal cancer (CRC) and the underlying molecular mechanisms have not yet been elucidated. Methods: LOXL1 expression in colorectal cancer was detected by immunohistochemistry, western blotting and real-time PCR. In vitro , colony formation, wound healing, migration and invasion assays were performed to investigate the effects of LOXL1 on cell proliferation, migration and invasion. In vivo , metastasis models and mouse xenografts were used to assess tumorigenicity and metastasis ability. Molecular biology experiments were utilized to reveal the underlying mechanisms by which LOXL1 modulates the Hippo pathway. Results: LOXL1 was highly expressed in normal colon tissues compared with cancer tissues. In vitro, silencing LOXL1 in CRC cell lines dramatically enhanced migration, invasion, and colony formation, while overexpression of LOXL1 exerted the opposite effects. The results of the in vivo experiments demonstrated that the overexpression of LOXL1 in CRC cell lines drastically inhibited metastatic progression and tumour growth. Mechanistically, LOXL1 inhibited the transcriptional activity of Yes-associated protein (YAP) by interacting with MST1/2 and increasing the phosphorylation of MST1/2. Conclusions: LOXL1 may function as an important tumour suppressor in regulating tumour growth, invasion and metastasis via negative regulation of YAP activity.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Lin Hu ◽  
Jing Wang ◽  
Yunliang Wang ◽  
Linpeng Wu ◽  
Chao Wu ◽  
...  

Abstract Background LOX-like 1 (LOXL1) is a lysyl oxidase, and emerging evidence has revealed its effect on malignant cancer progression. However, its role in colorectal cancer (CRC) and the underlying molecular mechanisms have not yet been elucidated. Methods LOXL1 expression in colorectal cancer was detected by immunohistochemistry, western blotting and real-time PCR. In vitro, colony formation, wound healing, migration and invasion assays were performed to investigate the effects of LOXL1 on cell proliferation, migration and invasion. In vivo, metastasis models and mouse xenografts were used to assess tumorigenicity and metastasis ability. Molecular biology experiments were utilized to reveal the underlying mechanisms by which LOXL1 modulates the Hippo pathway. Results LOXL1 was highly expressed in normal colon tissues compared with cancer tissues. In vitro, silencing LOXL1 in CRC cell lines dramatically enhanced migration, invasion, and colony formation, while overexpression of LOXL1 exerted the opposite effects. The results of the in vivo experiments demonstrated that the overexpression of LOXL1 in CRC cell lines drastically inhibited metastatic progression and tumour growth. Mechanistically, LOXL1 inhibited the transcriptional activity of Yes-associated protein (YAP) by interacting with MST1/2 and increasing the phosphorylation of MST1/2. Conclusions LOXL1 may function as an important tumour suppressor in regulating tumour growth, invasion and metastasis via negative regulation of YAP activity. Graphical abstract


2021 ◽  
Author(s):  
Zhewen Zheng ◽  
Xue Zhang ◽  
Jian Bai ◽  
Long Long ◽  
Di Liu ◽  
...  

Abstract BackgroundPhosphoglucomutase 1(PGM1) is known for its involvement in cancer pathogenesis. However, its biological role in colorectal cancer (CRC) is unknown. Here, we studied the functions and mechanisms of PGM1 in CRC.Methods We verified PGM-1 as a DEG by a comprehensive strategy of the TCGA-COAD dataset mining and computational biology. Relative levels of PGM-1 in CRC tumors and adjoining peritumoral tissue were identified by qRT-PCR, WB, and IHC staining in a tissue microarray. PGM1 functions were analyzed using CCK8, EdU, colony formation, cell cycle, apoptosis, and Transwell migration and invasion assays. The influence of PGM1 was further investigated using tumor formation in vivo.ResultsPGM1 mRNA and protein were both reduced in CRC and the reduction was related to CRC pathology and overall survival. PGM1 knockdown stimulated both proliferation and colony formation, promoting cell cycle arrest and apoptosis while overexpression has opposite effects in CRC cells both in vivo and in vitro. Furthermore, we lined the actions of PGM1 to the PI3K/ AKT pathway. ConclusionWe verified that PGM1 suppresses CRC through the PI3K/ AKT pathway. These results suggest the potential for targeting PGM1 in CRC therapies.


2021 ◽  
Vol 11 ◽  
Author(s):  
Kun Wu ◽  
Yuan-Yuan Mao ◽  
Nan-Nan Han ◽  
Hanjiang Wu ◽  
Sheng Zhang

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignant neoplasm; it is associated with high morbidity and mortality. Thus, understanding the molecular mechanisms underlying its initiation and progression is critical for establishing the most appropriate treatment strategies. We found that urokinase-type plasminogen activator (PLAU1) was upregulated and associated with poor prognosis in HNSCC. Silencing of PLAU1 inhibited the proliferation, colony-formation, migration, and invasion abilities of HNSCC cells in vitro and reduced the expression of matrix metalloproteinase 1 (MMP1), whereas PLAU1 overexpression significantly enhanced the growth, the colony-formation, migration, and invasion abilities, and the xenograft tumor growth of HNSCC cells in vivo and increased the expression of MMP1. The Co-IP assay verified that PLAU1 interacted with MMP1. A positive correlation between PLAU1 and MMP1 expression was observed in HNSCC samples. si-RNAs against MMP1 reversed the aggressive effects of PLAU1 overexpression in HNSCC. Taken together, our data revealed that PLAU1 facilitated HNSCC cell proliferation, invasion, and metastasis via interaction with MMP1.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Qingmin Chen ◽  
Ludong Tan ◽  
Zhe Jin ◽  
Yahui Liu ◽  
Ze Zhang

Cellular retinoic acid-binding protein 2 (CRABP2) binds retinoic acid (RA) in the cytoplasm and transports it into the nucleus, allowing for the regulation of specific downstream signal pathway. Abnormal expression of CRABP2 has been detected in the development of several tumors. However, the role of CRABP2 in hepatocellular carcinoma (HCC) has never been revealed. The current study aimed to investigate the role of CRABP2 in HCC and illuminate the potential molecular mechanisms. The expression of CRABP2 in HCC tissues and cell lines was detected by western blotting and immunohistochemistry assays. Our results demonstrated that the expression levels of CRABP2 in HCC tissues were elevated with the tumor stage development, and it was also elevated in HCC cell lines. To evaluate the function of CRABP2, shRNA-knockdown strategy was used in HCC cells. Cell proliferation, metastasis, and apoptosis were analyzed by CCK-8, EdU staining, transwell, and flow cytometry assays, respectively. Based on our results, knockdown of CRABP2 by shRNA resulted in the inhibition of tumor proliferation, migration, and invasion in vitro, followed by increased tumor apoptosis-related protein expression and decreased ERK/VEGF pathway-related proteins expression. CRABP2 silencing in HCC cells also resulted in the failure to develop tumors in vivo. These results provide important insights into the role of CRABP2 in the development and development of HCC. Based on our findings, CRABP2 may be used as a novel diagnostic biomarker, and regulation of CRABP2 in HCC may provide a potential molecular target for the therapy of HCC.


2018 ◽  
Vol 96 (3) ◽  
pp. 326-331 ◽  
Author(s):  
Ping He ◽  
Xiaojie Jin

Objective: The aim of this study was to investigate the role of SOX10 in nasopharyngeal carcinoma (NPC) and the underlying molecular mechanisms. Methods: The expression of SOX10 was initially assessed in human NPC tissues and a series of NPC cell lines through quantitative real-time PCR (qRT-PCR) and Western blot. Then, cell proliferation, cycle, migration, and the invasiveness of NPC cells with knockdown of SOX10 were examined by MTT, flow cytometry, and Transwell migration and invasion assays, respectively. Finally, nude mice tumorigenicity experiments were performed to evaluate the effects of SOX10 on NPC growth and metastasis in vivo. Results: SOX10 was significantly increased in NPC tissues and cell lines. In-vitro experiments revealed that loss of SOX10 obviously inhibited cell proliferation, migration, and invasiveness, as well as the epithelial–mesenchymal transition (EMT) process in NPC cells. In-vivo experiments further demonstrated that disrupted SOX10 expression restrained NPC growth and metastasis, especially in lung and liver. Conclusion: Taken together, our data confirmed the role of SOX10 as an oncogene in NPC progression, and revealed that SOX10 may serve as a novel biomarker for diagnosis of NPC, as well as a potential therapeutic target against this disease.


2020 ◽  
Author(s):  
Ying Cui ◽  
Yibing Bai ◽  
Jiani Yang ◽  
Yuanfei Yao ◽  
Chunhui Zhang ◽  
...  

Abstract Mitochondria-localized sirtuin 4 (SIRT4) is associated with malignant phenotypes in colorectal cancer. However, the molecular mechanisms that drive SIRT4-mediated carcinogenesis are unclear. Initially, we confirmed expression of SIRT4 in colorectal cancer through public database and in colorectal cancer patient tissues using quantitative real-time reverse transcription PCR. We established HCT116 colorectal cells that overexpressed SIRT4 and HT29 cells were transfected with plasmids bearing a small interfering RNA siRNA construct to silence SIRT4. Assays to determine the malignant phenotypes (proliferation, invasion and migration) were performed. Xenograft in-vivo models were also constructed. A protein interactome network was built using differentially expressed proteins identified using the liquid chromatography/tandem mass spectrophotometry, the findings of which were confirmed using coimmunoprecipitation, western blotting, and phenotype rescue experiments. Decreased SIRT4 expression was associated with malignant phenotypes in vitro and in vivo. The ribosomal biogenesis pathway was enriched in the interactome network. SIRT4 suppression activated glutaminase, thereby initiating AKT activation. Our research provided novel insights into the molecular mechanisms underlying colorectal cancer, and identified that SIRT4 exerts its antitumor activity in colorectal cancer possibly dependent on glutaminase to inhibit proliferation, migration, and invasion via the AKT/GSK3β/CyclinD1 pathway.


2020 ◽  
Author(s):  
Hanchen Xu ◽  
Yujing Liu ◽  
Peiqiu Cheng ◽  
Chunyan Wang ◽  
Yang Liu ◽  
...  

Abstract Background: Circular RNAs (circRNAs), an important member of the non-coding RNA family, have been revealed the role in the pathogenic progression of diseases in recent years, particularly in the malignant progression of cancer. With the application of high-throughput sequencing technology, a large number of circRNAs have been found in tumor tissues, and some circRNAs have demonstrated the role as oncogenic genes. In this study, we analyzed the circRNA expression profile in colorectal cancer (CRC) tissues and normal adjacent tissues by high-throughput sequencing, focusing on the circRNA_0000392, a circRNA with significantly increased expression in colorectal cancer tissues, and further investigating its function in the progression of colorectal cancer.Methods: The expression profile of circRNAs in 6 pairs of CRC tissues and normal adjacent tissues was analyzed by RNA-sequencing. We verified the differential circRNAs with expanded samples by qRT-PCR, focused on circRNA_0000392, and evaluated its associations with clinicopathological features. Then we knocked down circRNA_0000392 in CRC cells and evaluated the effect in vitro and in vivo by functional experiments. The dual luciferase assay and RNA pull-down were performed to further explore the downstream potential molecular mechanisms.Results: CircRNA_0000392 was significantly up-regulated in CRC compared with normal adjacent tissues and cell line. The expression level of circRNA_0000392 was positively correlated with the malignant progression of CRC. Functional studies revealed that reducing the expression of circRNA_0000392 could inhibit the proliferation and invasion of CRC both in vitro and in vivo. Mechanistically, circRNA­_0000392 could act as a sponge of miR-193a-5p and regulate the expression of PIK3R3, then affect the activation of the AKT-mTOR pathway in CRC cells.Conclusions: The circRNA_0000392 has the function as an oncogene through miR-193a-5p/PIK3R3-Akt axis in CRC cells, implying that circRNA_0000392 is a potential therapeutic target for the treatment of colorectal cancer and a predictive marker for CRC patients.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Yahang Liang ◽  
Jingbo Shi ◽  
Qingsi He ◽  
Guorui Sun ◽  
Lei Gao ◽  
...  

Abstract Background Colorectal cancer (CRC) is one of the most common cancers worldwide. Circular RNAs (circRNAs), a novel class of non-coding RNAs, have been confirmed to be key regulators of many diseases. With many scholars devoted to studying the biological function and mechanism of circRNAs, their mysterious veil is gradually being revealed. In our research, we explored a new circRNA, hsa_circ_0026416, which was identified as upregulated in CRC with the largest fold change (logFC = 3.70) of the evaluated circRNAs via analysing expression profiling data by high throughput sequencing of members of the GEO dataset (GSE77661) to explore the molecular mechanisms of CRC. Methods qRT-PCR and western blot analysis were utilized to assess the expression of hsa_circ_0026416, miR-346 and Nuclear Factor I/B (NFIB). CCK-8 and transwell assays were utilized to examine cell proliferation, migration and invasion in vitro, respectively. A luciferase reporter assay was used to verify the combination of hsa_circ_0026416, miR-346 and NFIB. A nude mouse xenograft model was also utilized to determine the role of hsa_circ_0026416 in CRC cell growth in vivo. Results Hsa_circ_0026416 was markedly upregulated in CRC patient tissues and plasma and was a poor prognosis in CRC patients. In addition, the area under the curve (AUC) of hsa_circ_0026416 (0.767) was greater than the AUC of CEA (0.670), CA19-9 (0.592) and CA72-4 (0.575). Functionally, hsa_circ_0026416 promotes cell proliferation, migration and invasion both in vitro and in vivo. Mechanistically, hsa_circ_0026416 may function as a ceRNA via competitively absorbing miR-346 to upregulate the expression of NFIB. Conclusions In summary, our findings demonstrate that hsa_circ_0026416 is an oncogene in CRC. Hsa_circ_0026416 promotes the progression of CRC via the miR-346/NFIB axis and may represent a potential biomarker for diagnosis and therapy in CRC.


Sign in / Sign up

Export Citation Format

Share Document