scholarly journals Genome wide association mapping and candidate gene analysis for hundred seed weight in soybean [ Glycine max (L.) Merrill ]

2019 ◽  
Author(s):  
Xue Zhao ◽  
Hairan Dong ◽  
Hong Chang ◽  
Jingyun Zhao ◽  
Weili Teng ◽  
...  

Abstract Background The hundred seed weight (HSW) was one of soybean [Glycine max (L.) Merrill] yield components, and was also especially critical for various soybean food types. In this study, a representative sample consisted of 185 accessions, selected from Northeast China, was tested under six tested environments for determination of quantitative trait nucleotide (QTN) of HSW through genome-wide association study (GWAS). Result A total of 24,180 single nucleotide polymorphisms (SNPs) with minor allele frequency more than 0.2 and missing data less than 3% were utilized to the estimate linkage disequilibrium (LD) level in the tested association panel. Thirty-four association signals were identified to be associated with HSW via GWAS. Among them, nineteen QTN were the novel and another fifteen QTN were overlapped or located near the genomic regions of known HSW QTL. A total of 237 genes, derived from 31 QTN, located near peak SNP for six tested environments, were considered as candidate genes, such as plant growing regulation, hormone metabolism, cell, RNA, protein metabolism, development, starch accumulation, secondary metabolism, signaling, and TCA, some of which have been found to participant in the regulation of HSW. A total of 106 SNPs from 16 candidate genes were significantly associated with HSW in soybean. Conclusions The identified loci with beneficial alleles and the candidate genes might be valuable for the molecular network and MAS of HSW.

2019 ◽  
Author(s):  
Xue Zhao ◽  
Hairan Dong ◽  
Hong Chang ◽  
Jingyun Zhao ◽  
Weili Teng ◽  
...  

Abstract Background: The hundred seed weight (HSW) is one of the yield components of soybean [Glycine max (L.) Merrill] and is especially critical for various soybean food types. In this study, a representative sample consisting of 185 accessions was selected from Northeast China and analysed in three tested environments to determine the quantitative trait nucleotide (QTN) of HSW through a genome-wide association study (GWAS). Result: A total of 24,180 single nucleotide polymorphisms (SNPs) with minor allele frequencies greater than 0.2 and missing data less than 3% were utilized to estimate linkage disequilibrium (LD) levels in the tested association panel. Thirty-four association signals were identified as associated with HSW via GWAS. Among them, nineteen QTNs were novel, and another fifteen QTNs were overlapped or located near the genomic regions of known HSW QTL. A total of 237 genes, derived from 31 QTNs and located near peak SNPs from the three tested environments in 2015 and 2016, were considered candidate genes, were related to plant growth regulation, hormone metabolism, cell, RNA, protein metabolism, development, starch accumulation, secondary metabolism, signalling, and the TCA cycle, some of which have been found to participate in the regulation of HSW. A total of 106 SNPs from 16 candidate genes were significantly associated with HSW in soybean. Conclusions: The identified loci with beneficial alleles and candidate genes might be valuable for the molecular network and MAS of HSW.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1335
Author(s):  
Taeklim Lee ◽  
Kyung Do Kim ◽  
Ji-Min Kim ◽  
Ilseob Shin ◽  
Jinho Heo ◽  
...  

The depletion of the stratospheric ozone layer is a major environmental issue and has increased the dosage of ultraviolet-B (UV-B) radiation reaching the Earth’s surface. Organisms are negatively affected by enhanced UV-B radiation, and especially in crop plants this may lead to severe yield losses. Soybean (Glycine max L.), a major legume crop, is sensitive to UV-B radiation, and therefore, it is required to breed the UV-B-resistant soybean cultivar. In this study, 688 soybean germplasms were phenotyped for two categories, Damage of Leaf Chlorosis (DLC) and Damage of Leaf Shape (DLS), after supplementary UV-B irradiation for 14 days. About 5% of the germplasms showed strong UV-B resistance, and GCS731 was the most resistant genotype. Their phenotypic distributions showed similar patterns to the normal, suggesting UV-B resistance as a quantitative trait governed by polygenes. A total of 688 soybean germplasms were genotyped using the Axiom® Soya 180K SNP array, and a genome-wide association study (GWAS) was conducted to identify SNPs significantly associated with the two traits, DLC and DLS. Five peaks on chromosomes 2, 6, 10, and 11 were significantly associated with either DLC or DLS, and the five adjacent genes were selected as candidate genes responsible for UV-B resistance. Among those candidate genes, Glyma.02g017500 and Glyma.06g103200 encode cryptochrome (CRY) and cryptochrome 1 (CRY1), respectively, and are known to play a role in DNA repair during photoreactivation. Real-time quantitative RT-PCR (qRT-PCR) results revealed that CRY1 was expressed significantly higher in the UV-B-resistant soybean compared to the susceptible soybean after 6 h of UV-B irradiation. This study is the first GWAS report on UV-B resistance in soybean, and the results will provide valuable information for breeding UV-B-resistant soybeans in preparation for climate change.


Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 192
Author(s):  
Xinghai Duan ◽  
Bingxing An ◽  
Lili Du ◽  
Tianpeng Chang ◽  
Mang Liang ◽  
...  

The objective of the present study was to perform a genome-wide association study (GWAS) for growth curve parameters using nonlinear models that fit original weight–age records. In this study, data from 808 Chinese Simmental beef cattle that were weighed at 0, 6, 12, and 18 months of age were used to fit the growth curve. The Gompertz model showed the highest coefficient of determination (R2 = 0.954). The parameters’ mature body weight (A), time-scale parameter (b), and maturity rate (K) were treated as phenotypes for single-trait GWAS and multi-trait GWAS. In total, 9, 49, and 7 significant SNPs associated with A, b, and K were identified by single-trait GWAS; 22 significant single nucleotide polymorphisms (SNPs) were identified by multi-trait GWAS. Among them, we observed several candidate genes, including PLIN3, KCNS3, TMCO1, PRKAG3, ANGPTL2, IGF-1, SHISA9, and STK3, which were previously reported to associate with growth and development. Further research for these candidate genes may be useful for exploring the full genetic architecture underlying growth and development traits in livestock.


2019 ◽  
Author(s):  
Waltram Ravelombola ◽  
Jun Qin ◽  
Ainong Shi ◽  
Fengmin Wang ◽  
Yan Feng ◽  
...  

Abstract Background Soybean [ Glycine max (L.) Merr.] is a legume of great interest worldwide. Enhancing genetic gain for agronomic traits via molecular approaches has been long considered as the main task for soybean breeders and geneticists. The objectives of this study were to evaluate maturity, plant height, seed weight, and yield in a diverse soybean accession panel, to conduct a genome-wide association study (GWAS) for these traits and identify SNP markers associated with the four traits, and to assess genomic selection (GS) accuracy. Results A total of 250 soybean accessions were evaluated for maturity, plant height, seed weight, and yield over three years. This panel was genotyped with a total of 10,259 high quality SNPs postulated from genotyping by sequencing (GBS). GWAS was performed using a Bayesian Information and Linkage Disequilibrium Iteratively Nested Keyway (BLINK) model, and GS was evaluated using a ridge regression best linear unbiased predictor (rrBLUP) model. The results revealed that a total of 20, 31, 37, 31, and 23 SNPs were significantly associated with the average 3-year data for maturity, plant height, seed weight, and yield, respectively; some significant SNPs were mapped into previously described loci ( E2 , E4 , and Dt1 ) affecting maturity and plant height in soybean and a new locus mapped on chromosome 20 was significantly associated with plant height; Glyma.10g228900 , Glyma.19g200800 , Glyma.09g196700 , and Glyma.09g038300 were candidate genes found in the vicinity of the top or the second best SNP for maturity, plant height, seed weight, and yield, respectively; a 11.5-Mb region of chromosome 10 was associated with both seed weight and yield; and GS accuracy was trait-, year-, and population structure-dependent. Conclusions The SNP markers identified from this study for plant height, maturity, seed weight and yield can be used to improve the four agronomic traits through marker-assisted selection (MAS) and GS in soybean breeding programs. After validation, the candidate genes can be transferred to new cultivars using SNP markers through MAS. The high GS accuracy has confirmed that the four agronomic traits can be selected in molecular breeding through GS.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1897
Author(s):  
Endale G. Tafesse ◽  
Krishna K. Gali ◽  
V. B. Reddy Lachagari ◽  
Rosalind Bueckert ◽  
Thomas D. Warkentin

Heat and drought, individually or in combination, limit pea productivity. Fortunately, substantial genetic diversity exists in pea germplasm for traits related to abiotic stress resistance. Understanding the genetic basis of resistance could accelerate the development of stress-adaptive cultivars. We conducted a genome-wide association study (GWAS) in pea on six stress-adaptive traits with the aim to detect the genetic regions controlling these traits. One hundred and thirty-five genetically diverse pea accessions were phenotyped in field studies across three or five environments under stress and control conditions. To determine marker trait associations (MTAs), a total of 16,877 valuable single nucleotide polymorphisms (SNPs) were used in association analysis. Association mapping detected 15 MTAs that were significantly (p ≤ 0.0005) associated with the six stress-adaptive traits averaged across all environments and consistent in multiple individual environments. The identified MTAs were four for lamina wax, three for petiole wax, three for stem thickness, two for the flowering duration, one for the normalized difference vegetation index (NDVI), and two for the normalized pigment and chlorophyll index (NPCI). Sixteen candidate genes were identified within a 15 kb distance from either side of the markers. The detected MTAs and candidate genes have prospective use towards selecting stress-hardy pea cultivars in marker-assisted selection.


2018 ◽  
Vol 58 (2) ◽  
pp. 224 ◽  
Author(s):  
Wengang Zhang ◽  
Lingyang Xu ◽  
Huijiang Gao ◽  
Yang Wu ◽  
Xue Gao ◽  
...  

In Chinese beef cattle industry, there are more than 60 million livestock, nearly half of which are Chinese Simmental beef cattle or Simmental crossbreds. Over the past decades, numerous quantitative trait loci for economic traits in cattle have been identified, while few studies for growth and carcass traits have been reported in Simmental beef cattle. In the present study, we conducted genome-wide association study based on BovineHD BeadChip and identified 41, 15, 3, 22 and 16 single-nucleotide polymorphisms significantly associated with average daily gain, liveweight before slaughter, carcass weight, dressing percentage and pure meat percentage respectively. In total, 18 candidate genes were found for growth and carcass traits, and four haplotype blocks for growth and carcass traits were discovered. These findings will facilitate detection of major genes and genetic variants involved in growth and carcass traits of beef cattle in further studies.


2014 ◽  
Vol 128 (1) ◽  
pp. 73-91 ◽  
Author(s):  
Arun Prabhu Dhanapal ◽  
Jeffery D. Ray ◽  
Shardendu K. Singh ◽  
Valerio Hoyos-Villegas ◽  
James R. Smith ◽  
...  

2015 ◽  
Vol 5 (11) ◽  
pp. 2391-2403 ◽  
Author(s):  
Jeffery D. Ray ◽  
Arun Prabhu Dhanapal ◽  
Shardendu K. Singh ◽  
Valerio Hoyos-Villegas ◽  
James R. Smith ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Kelechi Uchendu ◽  
Damian Ndubuisi Njoku ◽  
Agre Paterne ◽  
Ismail Yusuf Rabbi ◽  
Daniel Dzidzienyo ◽  
...  

Cassava breeders have made significant progress in developing new genotypes with improved agronomic characteristics such as improved root yield and resistance against biotic and abiotic stresses. However, these new and improved cassava (Manihot esculenta Crantz) varieties in cultivation in Nigeria have undergone little or no improvement in their culinary qualities; hence, there is a paucity of genetic information regarding the texture of boiled cassava, particularly with respect to its mealiness, the principal sensory quality attribute of boiled cassava roots. The current study aimed at identifying genomic regions and polymorphisms associated with natural variation for root mealiness and other texture-related attributes of boiled cassava roots, which includes fibre, adhesiveness (ADH), taste, aroma, colour, and firmness. We performed a genome-wide association (GWAS) analysis using phenotypic data from a panel of 142 accessions obtained from the National Root Crops Research Institute (NRCRI), Umudike, Nigeria, and a set of 59,792 high-quality single nucleotide polymorphisms (SNPs) distributed across the cassava genome. Through genome-wide association mapping, we identified 80 SNPs that were significantly associated with root mealiness, fibre, adhesiveness, taste, aroma, colour and firmness on chromosomes 1, 4, 5, 6, 10, 13, 17 and 18. We also identified relevant candidate genes that are co-located with peak SNPs linked to these traits in M. esculenta. A survey of the cassava reference genome v6.1 positioned the SNPs on chromosome 13 in the vicinity of Manes.13G026900, a gene recognized as being responsible for cell adhesion and for the mealiness or crispness of vegetables and fruits, and also known to play an important role in cooked potato texture. This study provides the first insights into understanding the underlying genetic basis of boiled cassava root texture. After validation, the markers and candidate genes identified in this novel work could provide important genomic resources for use in marker-assisted selection (MAS) and genomic selection (GS) to accelerate genetic improvement of root mealiness and other culinary qualities in cassava breeding programmes in West Africa, especially in Nigeria, where the consumption of boiled and pounded cassava is low.


Sign in / Sign up

Export Citation Format

Share Document