scholarly journals The Dimerization Interface in VraR is Essential for Induction of the Cell Wall Stress Response in Staphylococcus aureus: A Potential Druggable Target

2019 ◽  
Author(s):  
Ghazal Ghazal Tajbakhsh ◽  
Dasantila Golemi-Kotra

Abstract Background Staphylococcus aureus remains a medical challenge in the treatment of bacterial infections. It has acquired resistance to commonly used antibiotics, and to those considered to be the last weapons in treating staphylococcal infections, such as vancomycin. Studies have revealed that S. aureus is capable of mounting a rapid response to antibiotics that target cell wall peptidoglycan biosynthesis, such as β-lactams and vancomycin. The two-component system VraSR has been linked to the coordination of this response. VraS is a histidine kinase that undergoes autophosphorylation in the presence of signals elicited upon cell wall damage and it then transfers its phosphoryl group to VraR. VraR is a response regulator protein that functions as a transcription factor. Phosphorylation of VraR leads to its dimerization, which is required for optimum binding to its target promoters. Two-component systems have been targeted for the development of antibacterial agents. Deletion of the vraS or vraR gene has been shown to re-sensitize S. aureus to β-lactams and vancomycin. Results In this study, we explored perturbation of the VraR phosphorylation-induced activation as a means to inhibit the VraSR-mediated signal transduction pathway. We show that dimerization of VraR is essential for the phosphorylation-induced activation of VraR. A single point mutation in the dimerization interface of VraR, in which Met13 was replaced by Ala, led to the inability of VraR to dimerize and to bind optimally to the target promoter. The consequences of these in vitro molecular deficiencies are equally dramatic in vivo. Complementation of a vraR deletion S. aureus strain with the vraRM13Ala mutant gene failed to induce the cell wall stress response. Conclusions This study highlights the potential of targeting the phosphorylation-induced dimerization of VraR to disrupt the S. aureus cell wall stress response and in turn to re-sensitize S. aureus to β-lactams and vancomycin.

2012 ◽  
Vol 78 (22) ◽  
pp. 7954-7959 ◽  
Author(s):  
Oren Levinger ◽  
Tamar Bikels-Goshen ◽  
Elad Landau ◽  
Merav Fichman ◽  
Roni Shapira

ABSTRACTWe previously found that a short exposure ofStaphylococcus aureusto subinhibitory (SI) doses of epigallocatechin gallate (EGCG) results in increased cell wall thickness, adaptation, and enhanced tolerance to cell-wall-targeted antibiotics. In this study, the response to EGCG ofsigBandvraSRtranscription factor mutants was characterized. We show that in contrast to the results observed for wild-type (WT) strains, anS. aureus315vraSRnull mutant exposed to SI doses of EGCG did not exhibit increased tolerance to EGCG and oxacillin. A diminished increase in tolerance to ampicillin (from 16-fold to 4-fold) and no change in the magnitude of resistance to vancomycin were observed. Preexposure to EGCG enhanced the tolerance of wild-type andsigBnull mutant cells to lysostaphin, but this enhancement was much weaker in thevraSRnull mutant. Marked upregulation (about 60-fold) ofvraRand upregulation of the peptidoglycan biosynthesis-associated genesmurA,murF, andpbp2(2-, 5-, and 6-fold, respectively) in response to SI doses of EGCG were determined by quantitative reverse transcription-PCR (qRT-PCR). EGCG also induced the promoter ofsas016(encoding a cell wall stress protein of unknown function which is not induced invraSRnull mutants) in a concentration-dependent manner, showing kinetics comparable to those of cell-wall-targeting antibiotics. Taken together, our results suggest that the two-component VraSR system is involved in modulating the cell response to SI doses of EGCG.


2008 ◽  
Vol 8 (1) ◽  
pp. 186 ◽  
Author(s):  
Peter Sass ◽  
Andrea Jansen ◽  
Christiane Szekat ◽  
Vera Sass ◽  
Hans-Georg Sahl ◽  
...  

2012 ◽  
Vol 333 (2) ◽  
pp. 109-120 ◽  
Author(s):  
Vanina Dengler ◽  
Patricia Stutzmann Meier ◽  
Ronald Heusser ◽  
Peter Kupferschmied ◽  
Judit Fazekas ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Raúl García ◽  
Enrique Bravo ◽  
Sonia Diez-Muñiz ◽  
Cesar Nombela ◽  
Jose M. Rodríguez-Peña ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Andrea Salzer ◽  
Daniela Keinhörster ◽  
Christina Kästle ◽  
Benjamin Kästle ◽  
Christiane Wolz

2005 ◽  
Vol 4 (3) ◽  
pp. 259-276 ◽  
Author(s):  
Brian Wilkinson ◽  
Arunachalam Muthaiyan ◽  
Radheshyam Jayaswal

PLoS ONE ◽  
2016 ◽  
Vol 11 (8) ◽  
pp. e0161371 ◽  
Author(s):  
Yutaka Tanaka ◽  
Masato Sasaki ◽  
Fumie Ito ◽  
Toshio Aoyama ◽  
Michiyo Sato-Okamoto ◽  
...  

2012 ◽  
Vol 56 (7) ◽  
pp. 3629-3640 ◽  
Author(s):  
Ambre Jousselin ◽  
Adriana Renzoni ◽  
Diego O. Andrey ◽  
Antoinette Monod ◽  
Daniel P. Lew ◽  
...  

ABSTRACTUnderstanding in detail the factors which permitStaphylococcus aureusto counteract cell wall-active antibiotics is a prerequisite to elaborating effective strategies to prolong the usefulness of these drugs and define new targets for pharmacological intervention. Methicillin-resistantS. aureus(MRSA) strains are major pathogens of hospital-acquired and community-acquired infections and are most often treated with glycopeptides (vancomycin and teicoplanin) because of their resistance to most penicillins and a limited arsenal of clinically proven alternatives. In this study, we examined PrsA, a lipid-anchored protein of the parvulin PPIase family (peptidyl-prolylcis/transisomerase) found ubiquitously in all Gram-positive species, in which it assists posttranslocational folding at the outer surface of the cytoplasmic membrane. We show by both genetic and biochemical assays thatprsAis directly regulated by the VraRS two-component sentinel system of cell wall stress. Disruption ofprsAis tolerated byS. aureus, and its loss results in no detectable overt macroscopic changes in cell wall architecture or growth rate under nonstressed growth conditions. Disruption ofprsAleads, however, to notable alterations in the sensitivity to glycopeptides and dramatically decreases the resistance of COL (MRSA) to oxacillin. Quantitative transcriptional analysis reveals thatprsAandvraRare coordinately upregulated in a panel of stable laboratory and clinical glycopeptide-intermediateS. aureus(GISA) strains compared to their susceptible parents. Collectively, our results point to a role forprsAas a facultative facilitator of protein secretion or extracellular folding and provide a framework for understanding whyprsAis a key element of the VraRS-mediated cell wall stress response.


Sign in / Sign up

Export Citation Format

Share Document